Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-30T03:49:24.113Z Has data issue: false hasContentIssue false

43 - Studies of neutron background rejection in the PoGOLite polarimeter

from Part III - Future missions

Published online by Cambridge University Press:  06 July 2010

M. Kiss
Affiliation:
Royal Institute of Technology (KTH), Dept. of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, Sweden
Ronaldo Bellazzini
Affiliation:
Istituto Nazionale di Fisica Nucleare (INFN), Rome
Enrico Costa
Affiliation:
Istituto Astrofisica Spaziale, Rome
Giorgio Matt
Affiliation:
Università degli Studi Roma Tre
Gianpiero Tagliaferri
Affiliation:
Osservatorio Astronomico di Brera
Get access

Summary

The Polarized Gamma-ray Observer (PoGOLite) is a balloon-borne polarimeter based on measuring anisotropy in the azimuthal scattering angle distribution of photons in the energy range 25–80 keV. This is achieved through coincident detection of Compton scattering and photoelectric absorption within a close-packed array of phoswich detector cells (PDCs). Each PDC contains a plastic scintillator rod (main detector component), a plastic scintillator tube (active collimator) and a BGO crystal (anticoincidence shield).

A significant in-flight background is expected from atmospheric neutrons as well as from neutrons produced by interactions of cosmic rays with mechanical structures surrounding the instrument. Although this background can be reduced by introducing suitable shielding materials such as polyethylene, the shield geometry must be optimized through simulations in order to yield sufficient shielding with an acceptable increase in weight.

Geant4-based Monte-Carlo simulations have shown that a 10 cm thick polyethylene shield surrounding the PoGOLite instrument is required to sufficiently reduce the background, i.e. fake polarization events from atmospheric neutrons. In order to validate these simulations, a beam test was carried out, at which 14 MeV neutrons were used to irradiate a simple detector array with four plastic scintillators and three BGO crystals. The array was configured to mimic the PoGOLite detector geometry and also featured a polyethylene neutron shield. Here, we present details of the neutron beam test and our simulation thereof, which demonstrate that the treatment of neutron interactions within the Geant4 framework is reliable.…

Type
Chapter
Information
X-ray Polarimetry
A New Window in Astrophysics
, pp. 299 - 304
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×