Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T23:31:01.357Z Has data issue: false hasContentIssue false

Microbial community interactions in biofilms

Published online by Cambridge University Press:  03 June 2010

Philip D. Marsh
Affiliation:
Research Division, CAMR, Salisbury SP4 0JG, UK, Leeds Dental Institute, University of Leeds, LS2 9LU, UK
George H. W. Bowden
Affiliation:
Department of Oral Biology, Faculty of Dentistry, The University of Manitoba, Winnipeg, Canada
David G. Allison
Affiliation:
University of Manchester
P. Gilbert
Affiliation:
University of Manchester
H. M. Lappin-Scott
Affiliation:
University of Exeter
Get access

Summary

INTRODUCTION

In nature, colonization of habitats by mixtures of bacterial populations is the rule rather than the exception. Diverse groups of micro-organisms are invariably isolated from samples from environmentally exposed habitats. Evidence is accumulating that such mixtures of organisms are not merely passive neighbours but that they are involved in a wide range of dynamic physical and metabolic interactions. Indeed, these interactions appear to be essential for the attachment, growth and survival of species at a site, and also enable organisms to persist in what often appear to be overtly hostile environments.

Such interacting mixtures of micro-organisms are termed microbial communities, and are generally found on a surface, spatially organized as a biofilm (see other chapters in this volume). Microbial communities have been described from habitats ranging from aquatic environments, anaerobic digesters, plant surfaces and soil particles, to the digestive tract of humans and animals. Although the nomenclature of the species from these diverse habitats is different, this chapter will demonstrate that the function (or niche; Alexander, 1971) of the community members is often similar.

Existence within a microbial community can have profound consequences for the component populations. These include (a) a broader habitat range for colonization, (b) an increased metabolic diversity and efficiency, so that substrates normally recalcitrant to catabolism by individual organisms can often be broken down by consortia to simpler products, (c) increased resistance to environmental stress and to host defence factors (Caldwell et al., 1997a, b; Shapiro, 1998) and, in some cases, (d) an increased ability to cause disease (pathogenic synergism; van Steenbergen et al., 1984; Brook, 1987a).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×