Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-06T15:56:31.001Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  06 July 2010

Igor Herbut
Affiliation:
Simon Fraser University, British Columbia
Get access

Summary

Phase transitions are defined, and the concepts of order parameter and spontaneously broken symmetry are discussed. Simple models for magnetic phase transitions are introduced, together with some experimental examples. Critical exponents and the notion of universality are defined, and the consequences of the scaling assumptions are derived.

Phase transitions and order parameters

It is a fact of everyday experience that matter in thermodynamic equilibrium exists in different macroscopic phases. Indeed, it is difficult to imagine life on Earth without all three phases of water. A typical sample of matter, for example, has the temperature–pressure phase diagram presented in Fig. 1.1: by changing either of the two parameters the system may be brought into a solid, liquid, or gas phase. The change of phase may be gradual or abrupt. In the latter case, the phase transition takes place at well defined values of the parameters that determine the phase boundary.

Phase transitions are defined as points in the parameter space where the thermodynamic potential becomes non-analytic. Such a non-analyticity can arise only in the thermodynamic limit, when the size of the system is assumed to be infinite. In a finite system the partition function of any system is a finite sum of analytic functions of its parameters, and is therefore always analytic. A sharp phase transition is thus a mathematical idealization, albeit one that describes the reality extremely well. Macroscopic systems typically contain ∼ 1023 degrees of freedom, and as such are very close to being in the thermodynamic limit. The phase boundaries in Fig. 1.1, for example, for this reason represent reproducible physical quantities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Igor Herbut, Simon Fraser University, British Columbia
  • Book: A Modern Approach to Critical Phenomena
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755521.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Igor Herbut, Simon Fraser University, British Columbia
  • Book: A Modern Approach to Critical Phenomena
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755521.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Igor Herbut, Simon Fraser University, British Columbia
  • Book: A Modern Approach to Critical Phenomena
  • Online publication: 06 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755521.002
Available formats
×