Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T05:19:36.055Z Has data issue: false hasContentIssue false

6 - Overview of magnetic fusion

Published online by Cambridge University Press:  14 May 2010

Jeffrey P. Freidberg
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Introduction

The analysis presented in the previous chapters has established the plasma properties necessary for a magnetic fusion reactor. In particular, a combination of engineering and nuclear physics constraints has shown that a fusion plasma must achieve a temperature T ∼ 15 keV, a pressure p ∼ 7 atm, a plasma beta β ∼ 8%, and an energy confinement time τE ∼ 1 s. Furthermore, the plasma must be confined in the shape of a torus with minor radius a ∼ 2 m and major radius R0 ∼ 5 m. The challenge to the fusion plasma physics community is to discover ways to simultaneously achieve these parameters.

Because the behavior of a fusion plasma can be quite complicated and subtle, as well as being far from our everyday intuitive experiences, it is perhaps not surprising that this has led to the development of a new subfield of physics known as “plasma physics.” Only after knowledge of this new state of matter has been mastered will it be possible to produce robust fusion plasmas suitable for a fusion reactor.

The need to master plasma physics is the motivation for the second part of the book. Presented in these chapters is a description of the plasma physics necessary to produce a fusion plasma. The goal is to provide a reasonably rigorous introduction to the field of plasma physics as viewed from the perspective of a nuclear engineer.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fowler, T. K. (1997). The Fusion Quest. Baltimore: John Hopkins University Press.Google Scholar
McCracken, G. and Stott, P. (2005). Fusion, the Energy of the Universe. London: Elsevier Academic Press.Google Scholar
Fowler, T. K. (1997). The Fusion Quest. Baltimore: John Hopkins University Press.Google Scholar
McCracken, G. and Stott, P. (2005). Fusion, the Energy of the Universe. London: Elsevier Academic Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×