Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-19T17:18:28.048Z Has data issue: false hasContentIssue false

9 - NMR imaging studies of translational motion

Published online by Cambridge University Press:  06 August 2010

William S. Price
Affiliation:
University of Western Sydney
Get access

Summary

Introduction

Most simplistically, mutual diffusion can be probed by imaging diffusion profiles (e.g., the ingress of a solvent into a material). However, the integration of MRI techniques with the gradient-based measurements of translational motion that we have discussed in previous chapters allows for potentially more information to be obtained – especially from spatially inhomogeneous samples. It also provides additional techniques for measuring such motions. Diffusion is extremely important in MRI, and, amongst other effects, at very high resolutions it determines the ultimate resolution limit when the distance moved by a molecule is comparable to voxel dimensions. Further, since motion is more restricted near a boundary, the spins near the boundary are less dephased (attenuated) during the application of imaging gradients in high resolution imaging, consequently a stronger signal is obtained near the boundary and this has become known as diffusive edge enhancement. Relatedly, since the length scales that can be probed with NMR diffusion measurements encompass those that restrict diffusion in cellular systems, the combination of PGSE with imaging techniques can result in MRI contrasts. Whilst there can be diffusion anisotropy at the microscopic level (e.g., diffusion in a biological cell), the MRI sampling is coarse and thus if there is too much inhomogeneity of the ordering of the microscopic anisotropic systems, the information obtained from the voxel will appear isotropic.

Type
Chapter
Information
NMR Studies of Translational Motion
Principles and Applications
, pp. 296 - 307
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Callaghan, P. T., Principles of Nuclear Magnetic Resonance Microscopy. (Oxford: Clarendon Press, 1991).Google Scholar
Callaghan, P. T., Susceptibility & Diffusion Effects in NMR Microscopy. In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 7. (New York: Wiley, 1996), pp. 4665–71.Google Scholar
Callaghan, P. T. and Eccles, C. D., Diffusion-Limited Resolution in Nuclear Magnetic Resonance Microscopy. J. Magn. Reson. 78 (1988), 1–8.Google Scholar
Hyslop, W. B. and Lauterbur, P. C., Effects of Restricted Diffusion on Microscopic NMR Imaging. J. Magn. Reson. 94 (1991), 501–10.Google Scholar
Barsky, D., Pütz, B., Schulten, K., Schoeniger, J., Hsu, E. W., and Blackband, S., Diffusional Edge Enhancement Observed by NMR in Thin Glass Capillaries. Chem. Phys. Lett. 200 (1992), 88–96.CrossRefGoogle Scholar
Pütz, B., Barsky, D., and Schulten, K., Edge Enhancement by Diffusion in Microscopic Magnetic Resonance Imaging. J. Magn. Reson. 97 (1992), 27–53.Google Scholar
Callaghan, P. T., Coy, A., Forde, L. C., and Rofe, C. J., Diffusive Relaxation and Edge Enhancement in NMR Microscopy. J. Magn. Reson. A 101 (1993), 347–50.CrossRefGoogle Scholar
Swiet, T. M., Diffusive Edge Enhancement in Imaging. J. Magn. Reson. B 109 (1995), 12–18.Google Scholar
Song, Y.-Q., Goodson, B. M., Sheridan, B., Swiet, T. M., and Pines, A., Effects of Diffusion on Magnetic Resonance Imaging of Laser-Polarized Xenon Gas. J. Chem. Phys. 108 (1998), 6233–9.CrossRefGoogle Scholar
Stepišnik, J., Duh, A., Mohorič, A., and Serša, I., MRI Edge Enhancement as a Diffusive Discord of Spin Phase Structure. J. Magn. Reson. 137 (1999), 154–60.CrossRefGoogle ScholarPubMed
Pope, J. M. and Yao, S., Quantitative NMR Imaging of Flow. Concepts Magn. Reson. 5 (1993), 281–302.CrossRefGoogle Scholar
Fukushima, E., Nuclear Magnetic Resonance as a Tool to Study Flow. Annu. Rev. Fluid Mech. 31 (1999), 95–123.CrossRefGoogle Scholar
Cohen, Y. and Assaf, Y., High gradient or diffusion weighting factor-Value q-Space Analyzed Diffusion-Weighted MRS and MRI in Neuronal Tissues – A Technical Review. NMR Biomed. 15 (2002), 516–42.CrossRefGoogle ScholarPubMed
Bernstein, M. A., King, K. F., and Zhou, X. J., Handbook of MRI Pulse Sequences. (London: Elsevier Academic Press, 2004).Google Scholar
Mori, S., Introduction to Diffusion Tensor Imaging. (Oxford: Elsevier, 2007).Google Scholar
Seymour, J. D. and Callaghan, P. T., Generalized Approach to NMR Analysis of Flow and Dispersion in Porous Media. AIChE J. 43 (1997), 2096–111.CrossRefGoogle Scholar
Garroway, A. N., Velocity Measurements in Flowing Fluids by NMR. J. Phys. D. Appl. Phys. 7 (1974), L159–63.CrossRefGoogle Scholar
Callaghan, P. T., Eccles, C. D., and Xia, Y., NMR Microscopy of Dynamic Displacements: gradient or diffusion weighting factor, more commonly written as b-Space and q-Space Imaging. J. Phys. E: Sci. Instrum. 21 (1988), 820–2.CrossRefGoogle Scholar
Callaghan, P. T. and Xia, Y., Velocity and Diffusion Imaging in Dynamic NMR Microscopy. J. Magn. Reson. 91 (1991), 326–52.Google Scholar
Callaghan, P. T., Jeffrey, K. R., and Xia, Y., Translational Motion Imaging with Pulsed Gradient Spin Echo Methods. In Magnetic Resonance Microscopy, ed. Blümich, B. and Kuhn, W.. (Weinheim: VCH, 1992), pp. 328–47.Google Scholar
Mattiello, J., Basser, P. J., and Bihan, D., Analytical Expressions for the gradient or diffusion weighting factor Matrix in NMR Diffusion Imaging and Spectroscopy. J. Magn. Reson. A 108 (1994), 131–41.CrossRefGoogle Scholar
Güllmar, D., Haueisen, J., and Reichenbach, J. R., Analysis of gradient or diffusion weighting factor-Value Calculations in Diffusion Weighted and Diffusion Tensor Imaging. Concepts Magn. Reson. 25A (2005), 53–66.CrossRefGoogle Scholar
Basser, P. J., Mattiello, J., and Bihan, D., Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. J. Magn. Reson. B 103 (1994), 247–54.CrossRefGoogle ScholarPubMed
Mattiello, J., Basser, P. J., and Bihan, D., The b Matrix in Diffusion Tensor Echo-Planar Imaging. Magn. Reson. Med. 37 (1997), 292–300.CrossRefGoogle Scholar
Bihan, D., Molecular Diffusion Nuclear Magnetic Resonance Imaging. Magn. Reson. Q. 7 (1991), 1–30.Google ScholarPubMed
Basser, P. J., Inferring Microstructural Features and the Physiological State of Tissues from Diffusion-Weighted Images. NMR Biomed. 8 (1995), 333–44.CrossRefGoogle ScholarPubMed
Bihan, D., Methods and Applications of Diffusion MRI. In Methods in Biomedical Magnetic Resonance Imaging and Spectroscopy, ed. Young, I. M.. vol. 1. (New York: Wiley, 2000).Google Scholar
Bihan, D., Diffusion & Perfusion in MRI. In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 3. (New York: Wiley, 1996), pp. 1645–56.Google Scholar
Norris, D. G., The Effects of Microscopic Tissue Parameters on the Diffusion Weighted Magnetic Resonance Imaging Experiment. NMR Biomed. 14 (2001), 77–93.CrossRefGoogle ScholarPubMed
Basser, P. J. and Jones, D. K., Diffusion-Tensor MRI: Theory, Experimental Design and Data Analysis – A Technical Review. NMR Biomed. 15 (2002), 456–67.CrossRefGoogle ScholarPubMed
Bammer, R., Basic Principles of Diffusion-Weighted Imaging. Eur. J. Radiol. 45 (2003), 169–84.CrossRefGoogle ScholarPubMed
Nicolay, K., Braun, K. P., Graaf, R. A., Dijkhuizen, R. M., and Kruiskamp, M. J., Diffusion NMR Spectroscopy. NMR Biomed. 14 (2001), 94–111.CrossRefGoogle ScholarPubMed
Strijkers, G. J., Drost, M. R., Heemskerk, A. M., Kruiskamp, M. J., and Nicolay, K., Diffusion MRI and MRS of Skeletal Muscle. Isr. J. Chem. 43 (2003), 71–80.CrossRefGoogle Scholar
Minati, L. and Węglarz, W. P., Physical Foundations, Models, and Methods of Diffusion Magnetic Resonance Imaging of the Brain: A Review. Concepts Magn. Reson. 30A (2007), 278–307.CrossRefGoogle Scholar
Kingsley, P. B., Introduction to Diffusion Tensor Imaging Mathematics: Part I. Tensors, Rotations, and Eigenvectors. Concepts Magn. Reson. 28A (2006), 101–22.CrossRefGoogle Scholar
Kingsley, P. B., Introduction to Diffusion Tensor Imaging Mathematics: Part II. Anisotropy, Diffusion-Weighting Factors, and Gradient Encoding Schemes. Concepts Magn. Reson. 28A (2006), 123–54.CrossRefGoogle Scholar
Kingsley, P. B., Introduction to Diffusion Tensor Imaging Mathematics: Part III. Tensor Calculation, Noise, Simulations, and Optimization. Concepts Magn. Reson. 28A (2006), 155–79.CrossRefGoogle Scholar
Basser, P. J. and Pajivec, S., Statistical Artifacts in Diffusion Tensor MRI (DT-MRI) Caused by Background Noise. Magn. Reson. Med. 44 (2000), 41–50.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Pierpaoli, C. and Basser, P. J., Toward a Quantitative Assessment of Diffusion Anisotropy. Magn. Reson. Med. 36 (1996), 893–906.CrossRefGoogle Scholar
Uluǧ, A. M. and Zijl, P. C. M., Orientation-Independent Diffusion Imaging Without Tensor Diagonalization: Anisotropy Definitions Based on Physical Attributes of the Diffusion Ellipsoid. J. Mag. Res. Imaging 9 (1999), 804–13.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Basser, P. J., Mattiello, J., and Bihan, D., MR Diffusion Tensor Spectroscopy and Imaging. Biophys. J. 66 (1994), 259–67.CrossRefGoogle Scholar
Basser, P. J. and Pierpaoli, C., Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI. J. Magn. Reson. B 111 (1996), 209–19.CrossRefGoogle ScholarPubMed
Chin, C.-L., Wehrli, F. W., Hwang, S. N., Jaggard, D. L., Hackney, D. B., and Wehrli, S. W., Feasibility of Probing Boundary Morphology of Structured Materials by 2D NMR q-Space Imaging. J. Magn. Reson. 160 (2003), 20–5.CrossRefGoogle ScholarPubMed
Chin, C.-L., Wehrli, F. W., Fan, Y., Hwang, S. N., Schwartz, E. D., Nissanov, J., and Hackney, D. B., Assessment of Axonal Fiber Tract Architecture in Excised Rat Spinal Cord by Localized NMR q-Space Imaging: Simulations and Experimental Studies. Magn. Reson. Med. 52 (2004), 733–40.CrossRefGoogle ScholarPubMed
Hwang, S. N., Chin, C.-L., Wehrli, F. W., and Hackney, D. B., An Image-Based Finite Difference Model for Simulating Restricted Diffusion. Magn. Reson. Med. 50 (2003), 373–82.CrossRefGoogle ScholarPubMed
Meier, C. H., Dreher, W., and Leibfritz, D., Diffusion in Compartmental Systems. I. A Comparison of An Analytical Model with Simulations. Magn. Reson. Med. 50 (2003), 500–7.CrossRefGoogle ScholarPubMed
Meier, C. H., Dreher, W., and Leibfritz, D., Diffusion in Compartmental Systems. II. Diffusion-Weighted Measurements of Rat Brain Tissue In Vivo and Postmortem at Very Large gradient or diffusion weighting factor-Values. Magn. Reson. Med. 50 (2003), 510–14.CrossRefGoogle ScholarPubMed
Assaf, Y., Freidlin, R. Z., Rohde, G. K., and Basser, P. J., New Modeling and Experimental Framework to Characterize Hindered and Restricted Water Diffusion in Brain White Matter. Magn. Reson. Med. 52 (2004), 965–78.CrossRefGoogle ScholarPubMed
Hrabe, J., Hrabtová, S., and Segeth, K., A Model of Effective Diffusion and Tortuosity in the Extracellular Space of the Brain. Biophys. J. 87 (2004), 1606–17.CrossRefGoogle Scholar
Özarslan, E., Basser, P. J., Shepherd, T. M., Thelwall, P. E., Vemuri, B. C., and Blackband, S. J., Observation of Anomalous Diffusion in Excised Tissue by Characterizing the Diffusion-Time Dependence of the MR Signal. J. Magn. Reson. 183 (2006), 315–23.CrossRefGoogle ScholarPubMed
Sen, P. N. and Basser, P. J., A Model for Diffusion in White Matter in the Brain. Biophys. J. 89 (2005), 2927–38.CrossRefGoogle Scholar
Sen, P. N. and Basser, P. J., Modeling Diffusion in White Matter in the Brain: A Composite Porous Medium. Magn. Reson. Imaging 23 (2005), 215–20.CrossRefGoogle ScholarPubMed
Magin, R. L., Abdullah, O., Baleanu, D., and Zhou, X. J., Anomalous Diffusion Expressed Through Fractional Order Differential Operators in the Bloch–Torrey Equation. J. Magn. Reson. 190 (2008), 255–70.CrossRefGoogle ScholarPubMed
Conturo, T. E., Lori, N. F., Cull, T. S., Akbudak, E., Snyder, A. Z., Shimony, J. S., McKinstry, R. C., Burton, H., and Raichle, M. E., Tracking Neuronal Fiber Pathways in the Living Human Brain. Proc. Natl. Acad. Sci. U.S.A. 96 (1999), 10422–27.CrossRefGoogle ScholarPubMed
Lori, N. F., Akbudak, E., Shimony, J. S., Cull, T. S., Snyder, A. Z., Guillory, R. K., and Conturo, T. E., Diffusion Tensor Fiber Tracking of Human Brain Connectivity: Aquisition Methods, Reliability Analysis and Biological Results. NMR Biomed. 15 (2002), 493–515.CrossRefGoogle ScholarPubMed
Mori, S. and Zijl, P. C. M., Fiber Tracking: Principles and Strategies – A Technical Review. NMR Biomed. 15 (2002), 468–80.CrossRefGoogle ScholarPubMed
Watts, R., Liston, C., Niogi, S., and Uluğ, A. M., Fiber Tracking Using Magnetic Resonance Diffusion Tensor Imaging and Its Applications to Human Brain Development. Ment. Retard. Dev. Disabil. Res. Rev. 9 (2003), 168–77.CrossRefGoogle ScholarPubMed
Liu, C., Bammer, R., and Moseley, M. E., Limitations of Apparent Diffusion Coefficient-Based Models in Characterizing Non-Gaussian Diffusion. Magn. Reson. Med. 54 (2005), 419–28.CrossRefGoogle ScholarPubMed
Assaf, Y., Ben-Bashat, D., Chapman, J., Peled, S., Biton, I. E., Kafri, M., Segev, Y., Hendler, T., Korczyn, A. D., Graif, M., and Cohen, Y., High gradient or diffusion weighting factor-Value q-Space Analyzed Diffusion-Weighted MRI: Application to Multiple Sclerosis. Magn. Reson. Med. 47 (2002), 115–26.CrossRefGoogle ScholarPubMed
Tuch, D. S., Q-Ball Imaging. Magn. Reson. Med. 52 (2004), 1358–72.CrossRefGoogle ScholarPubMed
Özarslan, E., Vemuri, B. C., and Mareci, T. H., Generalized Scalar Measures for Diffusion MRI Using Trace, Variance, and Entropy. Magn. Reson. Med. 53 (2005), 866–76.CrossRefGoogle ScholarPubMed
Özarslan, E., Shepherd, T. M., Vemuri, B. C., Blackband, S. J., and Mareci, T. H., Resolution of Complex Tissue Microarchitecture Using the Diffusion Orientation Transform (DOT). Neuroimage 31 (2006), 1086–106.CrossRefGoogle Scholar
Topgaard, D., Probing Biological Tissue Microstructure with Magnetic Resonance Diffusion Techniques. Curr. Opin. Colloid Interface Sci. 11 (2006), 7–12.CrossRefGoogle Scholar
Komlosh, M. E., Horkay, F., Freidlin, R. Z., Nevo, U., Assaf, Y., and Basser, P. J., Detection of Microscopic Anisotropy in Gray Matter and in a Novel Tissue Phantom Using Double Pulsed Gradient Spin Echo MR. J. Magn. Reson. 189 (2007), 38–45.CrossRefGoogle Scholar
Patz, S., Steady State Free Precession: An Overview of Basic Concepts and Applications. In Advances in Magnetic Resonance Imaging, ed. Feig, E.. (Norwood, NJ: Ablex Publishing Corporation, 1989), pp. 73–102.
Gudbjartsson, H. and Patz, S., Simultaneous Calculation of Flow and Diffusion Sensitivity in Steady-State Free Precession Imaging. Magn. Reson. Med. 34 (1995), 567–79.CrossRefGoogle ScholarPubMed
Kimmich, R., NMR: Tomography, Diffusometry, Relaxometry. (Berlin: Springer Verlag, 1997).CrossRefGoogle Scholar
Mosher, T. J. and Smith, M. B., A DANTE Tagging Sequence for the Evaluation of Translational Sample Motion. Magn. Reson. Med. 15 (1990), 334–9.CrossRefGoogle ScholarPubMed
Chandra, S. and Yang, Y., Simulations and Demonstrations of Localized Tagging Experiments. J. Magn. Reson. B 111 (1996), 285–8.CrossRefGoogle ScholarPubMed
Mueth, D. M., Debregeas, G. M., Karczmar, G. F., Eng, P. J., Nagel, S. R., and Jaeger, H. M., Signatures of Granular Microstructure in Dense Shear Flows. Nature 406 (2000), 385–9.CrossRefGoogle ScholarPubMed
Caprihan, A. and Fukushima, E., Flow Measurements by NMR. Phys. Rep. 198 (1990), 195–235.CrossRefGoogle Scholar
Duerk, J. L. and Simonetti, O. P., Review of MRI Gradient Waveform Design Methods with Application in the Study of Motion. Concepts Magn. Reson. 5 (1993), 105–22.CrossRefGoogle Scholar
Madio, D. P., Gach, H. N., and Lowe, I. J., Ultra-Fast Velocity Imaging in Stenotically Produced Turbulent Jets Using RUFIS. Magn. Reson. Med. 39 (1998), 574–80.CrossRefGoogle ScholarPubMed
Buhai, B., Hakimov, A., Ardelean, I., and Kimmich, R., NMR Acceleration Mapping in Percolation Model Objects. J. Magn. Reson. 168 (2004), 175–85.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×