Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-08T17:22:32.036Z Has data issue: false hasContentIssue false

9 - MRS in neurodegenerative disease

Published online by Cambridge University Press:  04 August 2010

Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Alberto Bizzi
Affiliation:
Istituto Neurologico Carlo Besta, Milan
Nicola De Stefano
Affiliation:
Università degli Studi, Siena
Rao Gullapalli
Affiliation:
University of Maryland, Baltimore
Doris D. M. Lin
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Key points

  • Despite the relatively common occurrence of neurodegenerative diseases, MRS is lightly used in these conditions, most likely because of lack of sensitivity and overlap of spectral findings in different disorders.

  • MRS usually shows decreased levels of NAA in dementia.

  • Dementias associated with gliosis (e.g. Alzheimer's) also have increased myo-inositol (mI).

  • mI/NAA ratios correlate with clinical severity and histopathological involvement in Alzheimer's disease.

  • mI/NAA ratios, and regional variations in metabolite levels, may be helpful in the differential diagnosis of different dementias (Alzheimer, vascular, frontotemporal, Lewy body).

  • Parkinson's disease does not seem to be associated with any metabolic disorders, although other Parkinsonian disorders (e.g. multiple system atrophy) may show reduced NAA in the basal ganglia.

  • Metabolic changes in Huntington's disease are unclear; some studies have reported elevated lactate levels in the basal ganglia, but others have not.

  • Prion diseases are characterized by decreased NAA levels.

  • In amyotrophic lateral sclerosis (ALS), upper motor neuron NAA decreases may be helpful in establishing a diagnosis.

Introduction

Neurodegenerative diseases include a very wide group of disorders affecting the central nervous system (CNS). Many of these disorders arise from the combined effects of genetic predisposition and environmental factors. This results in reduced cognition (e.g. Alzheimer's disease, dementia with Lewy bodies, and vascular dementia), motor system performance (e.g. amyotrophic lateral sclerosis), or both (e.g. Parkinson's disease and prion diseases).

Type
Chapter
Information
Clinical MR Spectroscopy
Techniques and Applications
, pp. 144 - 160
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hsu, YY, Du, AT, Schuff, N, Weiner, MW. Magnetic resonance imaging and magnetic resonance spectroscopy in dementias. J Geriatr Psychiatry Neurol 2001; 14: 145–66.CrossRefGoogle ScholarPubMed
Martin, WR. Magnetic resonance imaging and spectroscopy in Parkinson's disease. Adv Neurol 2001; 86: 197–203.Google ScholarPubMed
MacFarlane, RG, Wroe, SJ, Collinge, J, Yousry, TA, Jager, HR. Neuroimaging findings in human prion disease. J Neurol Neurosurg Psychiatry 2007; 78: 664–70.CrossRefGoogle ScholarPubMed
Kalra, S, Arnold, D. Neuroimaging in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2003; 4: 243–8.CrossRefGoogle ScholarPubMed
Martin, WR. MR spectroscopy in neurodegenerative disease. Mol Imaging Biol 2007; 9: 196–203.CrossRefGoogle ScholarPubMed
Wallin, A. Current definition and classification of dementia diseases. Acta Neurol Scand 1996; 168(suppl): 39–44.CrossRefGoogle ScholarPubMed
Lopez, OL, Litvan, I, Catt, KE, Stowe, R, Klunk, W, Kaufer, DI, et al. Accuracy of four clinical diagnostic criteria for the diagnosis of neurodegenerative dementias. Neurology 1999; 53: 1292–9.CrossRefGoogle Scholar
Massoud, F, Devi, G, Stern, Y, Lawton, A, Goldman, JE, Liu, Y, et al. A clinicopathological comparison of community-based and clinic-based cohorts of patients with dementia. Arch Neurol 1999; 56: 1368–73.CrossRefGoogle ScholarPubMed
Kantarci, K. 1H magnetic resonance spectroscopy in dementia. Br J Radiol 2007: 80(Spec No 2): S146–52.CrossRefGoogle ScholarPubMed
Waldemar, G, Dubois, B, Emre, M, Georges, J, McKeith, IG, Rossor, M, et al. Recommendations for the diagnosis and management of Alzheimer's disease and other disorders associated with dementia: EFNS guideline. Eur J Neurol 2007; 14: e1–26.CrossRefGoogle ScholarPubMed
Small, BJ, Gagnon, E, Robinson, B. Early identification of cognitive deficits: Preclinical Alzheimer's disease and mild cognitive impairment. Geriatrics 2007; 62: 19–23.Google ScholarPubMed
Saxton, J, Lopez, OL, Ratcliff, G, Dulberg, C, Fried, LP, Carlson, MC, et al. Preclinical Alzheimer disease: Neuropsychological test performance 1.5 to 8 years prior to onset. Neurology 2004; 63: 2341–7.CrossRefGoogle Scholar
Perneczky, R, Pohl, C, Sorg, C, Hartmann, J, Komossa, K, Alexopoulos, P, et al. Complex activities of daily living in mild cognitive impairment: Conceptual and diagnostic issues. Age Ageing 2006; 35: 240–5.CrossRefGoogle ScholarPubMed
Forstl, H, Kurz, A. Clinical features of Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci 1999; 249: 288–90.Google ScholarPubMed
Geula, C. Abnormalities of neural circuitry in Alzheimer's disease: Hippocampus and cortical cholinergic innervation. Neurology 1998; 51: S18–S29.CrossRefGoogle ScholarPubMed
Schmitt, FA, Davis, DG, Wekstein, DR, Smith, CD, Ashford, JW, Markesbery, WR. “Preclinical” AD revisited: Neuropathology of cognitively normal older adults. Neurology 2000; 55: 370–6.CrossRefGoogle ScholarPubMed
Kordower, JH, Chu, Y, Stebbins, GT, DeKosky, ST, Cochran, EJ, Bennett, D, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001; 49: 202–13.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Kantarci, K, Jack, CR, Jr. Quantitative magnetic resonance techniques as surrogate markers of Alzheimer's disease. Neurorx 2004; 1: 196–205.CrossRefGoogle ScholarPubMed
Heckemann, RA, Hammers, A, Rueckert, D, Aviv, RI, Harvey, CJ, Hajnal, JV. Automatic volumetry on MR brain images can support diagnostic decision making. BMC Med Imaging 2008; 8: 9.CrossRefGoogle ScholarPubMed
Kloppel, S, Stonnington, CM, Chu, C, Draganski, B, Scahill, RI, Rohrer, JD, et al. Automatic classification of MR scans in Alzheimer's disease. Brain 2008; 131: 681–9.CrossRefGoogle Scholar
Fox, NC, Crum, WR, Scahill, RI, Stevens, JM, Janssen, JC, Rossor, MN. Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images. Lancet 2001; 358: 201–05.CrossRefGoogle ScholarPubMed
Pennanen, C, Testa, C, Laakso, MP, Hallikainen, M, Helkala, EL, Hanninen, T, et al. A voxel based morphometry study on mild cognitive impairment. J Neurol Neurosurg Psychiatry 2005; 76: 11–14.CrossRefGoogle ScholarPubMed
Ashburner, J, Csernansky, JG, Davatzikos, C, Fox, NC, Frisoni, GB, Thompson, PM. Computer-assisted imaging to assess brain structure in healthy and diseased brains. Lancet Neurol 2003; 2: 79–88.CrossRefGoogle ScholarPubMed
Shonk, TK, Moats, RA, Gifford, P, Michaelis, T, Mandigo, JC, Izumi, J, et al. Probable Alzheimer disease: Diagnosis with proton MR spectroscopy. Radiology 1995; 195: 65–72.CrossRefGoogle ScholarPubMed
Tedeschi, G, Bertolino, A, Lundbom, N, Bonavita, S, Patronas, NJ, Duyn, JH, et al. Cortical and subcortical chemical pathology in Alzheimer's disease as assessed by multislice proton magnetic resonance spectroscopic imaging. Neurology 1996: 47: 696–704.CrossRefGoogle ScholarPubMed
Doraiswamy, PM, Charles, HC, Krishnan, KR. Prediction of cognitive decline in early Alzheimer's disease [Letter]. Lancet 1998; 352: 1678.CrossRefGoogle Scholar
Schuff, N, Capizzano, AA, Du, AT, Amend, DL, O'Neill, J, Norman, D, et al. Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology 2002; 58: 928–35.CrossRefGoogle ScholarPubMed
Kantarci, K, Petersen, RC, Boeve, BF, Knopman, DS, Tang-Wai, DF, O'Brien, PC, et al. 1H MR spectroscopy in common dementias. Neurology 2004; 63: 1393–8.CrossRefGoogle ScholarPubMed
Rai, GS, McConnell, JR, Waldman, A, Grant, D, Chaudry, M. Brain proton spectroscopy in dementia: An aid to clinical diagnosis [Letter]. Lancet 1999; 353: 1063–4.CrossRefGoogle Scholar
Soher, BJ, Doraiswamy, PM, Charles, HC. A review of 1H MR spectroscopy findings in Alzheimer's disease. Neuroimaging Clin N Am 2005; 15: 847–52, xi.CrossRefGoogle ScholarPubMed
Valenzuela, MJ, Sachdev, P. Magnetic resonance spectroscopy in AD. Neurology 2001; 56: 592–8.CrossRefGoogle ScholarPubMed
MacKay, S, Ezekiel, F, Di, SV, Meyerhoff, DJ, Gerson, J, Norman, D, et al. Alzheimer disease and subcortical ischemic vascular dementia: Evaluation by combining MR imaging segmentation and H-1 MR spectroscopic imaging. Radiology 1996; 198: 537–45.CrossRefGoogle ScholarPubMed
Schuff, N, Amend, D, Ezekiel, F, Steinman, SK, Tanabe, J, Norman, D, et al. Changes of hippocampal N-acetyl aspartate and volume in Alzheimer's disease. A proton MR spectroscopic imaging and MRI study. Neurology 1997; 49: 1513–21.CrossRefGoogle ScholarPubMed
Moffett, JR, Ross, B, Arun, P, Madhavarao, CN, Namboodiri, AM. N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Prog Neurobiol 2007; 81: 89–131.CrossRefGoogle ScholarPubMed
Mohanakrishnan, P, Fowler, AH, Vonsattel, JP, Husain, MM, Jolles, PR, Liem, P, et al. An in vitro 1H nuclear magnetic resonance study of the temporoparietal cortex of Alzheimer brains. Exp Brain Res 1995; 102: 503–10.CrossRefGoogle Scholar
Sweet, RA, Panchalingam, K, Pettegrew, JW, McClure, RJ, Hamilton, RL, Lopez, OL, et al. Psychosis in Alzheimer disease: Postmortem magnetic resonance spectroscopy evidence of excess neuronal and membrane phospholipid pathology. Neurobiol Aging 2002; 23: 547–53.CrossRefGoogle ScholarPubMed
Miller, BL, Moats, RA, Shonk, T, Ernst, T, Woolley, S, Ross, BD. Alzheimer disease: Depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology 1993; 187: 433–7.CrossRefGoogle ScholarPubMed
Ross, BD, BlumI, S, Cowan, R, Danielsen, E, Farrow, N, Tan, J. In vivo MR spectroscopy of human dementia. Neuroimaging Clin N Am 1998; 8: 809–22.Google ScholarPubMed
Chantal, S, Braun, CM, Bouchard, RW, Labelle, M, Boulanger, Y. Similar 1H magnetic resonance spectroscopic metabolic pattern in the medial temporal lobes of patients with mild cognitive impairment and Alzheimer disease. Brain Res 2004; 1003: 26–35.CrossRefGoogle ScholarPubMed
Glanville, NT, Byers, DM, Cook, HW, Spence, MW, Palmer, FB. Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. Biochim Biophys Acta 1989; 1004: 169–79.CrossRefGoogle Scholar
Kantarci, K, Jack, CR, Jr., Xu, YC, Campeau, NG, O'Brien, PC, Smith, GE, et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: A 1H MRS study. Neurology 2000; 55: 210–7.CrossRefGoogle ScholarPubMed
Godbolt, AK, Waldman, AD, MacManus, DG, Schott, JM, Frost, C, Cipolotti, L, et al. MRS shows abnormalities before symptoms in familial Alzheimer disease. Neurology 2006; 66: 718–22.CrossRefGoogle ScholarPubMed
Heijer, T, Sijens, PE, Prins, ND, Hofman, A, Koudstaal, PJ, Oudkerk, M, et al. MR spectroscopy of brain white matter in the prediction of dementia. Neurology 2006; 66: 540–4.CrossRefGoogle Scholar
Ross, BD, Bluml, S, Cowan, R, Danielsen, E, Farrow, N, Gruetter, R. In vivo magnetic resonance spectroscopy of human brain: The biophysical basis of dementia. Biophys Chem 1997; 68: 161–72.CrossRefGoogle Scholar
Chantal, S, Labelle, M, Bouchard, RW, Braun, CM, Boulanger, Y. Correlation of regional proton magnetic resonance spectroscopic metabolic changes with cognitive deficits in mild Alzheimer disease. Arch Neurol 2002; 59: 955–62.CrossRefGoogle ScholarPubMed
Kantarci, K, Smith, GE, Ivnik, RJ, Petersen, RC, Boeve, BF, Knopman, DS, et al. 1H magnetic resonance spectroscopy, cognitive function, and apolipoprotein E genotype in normal aging, mild cognitive impairment and Alzheimer's disease. J Int Neuropsychol Soc 2002; 8: 934–42.CrossRefGoogle ScholarPubMed
Kantarci, K, Knopman, DS, Dickson, DW, Parisi, JE, Whitwell, JL, Weigand, SD, et al. Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology 2008; 248: 210–20.CrossRefGoogle ScholarPubMed
Kantarci, K, Weigand, SD, Petersen, RC, Boeve, BF, Knopman, DS, Gunter, J, et al. Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer's disease. Neurobiol Aging 2007; 28: 1330–9.CrossRefGoogle ScholarPubMed
Modrego, PJ, Fayed, N, Pina, MA. Conversion from mild cognitive impairment to probable Alzheimer's disease predicted by brain magnetic resonance spectroscopy. Am J Psychiatry 2005; 162: 667–75.CrossRefGoogle ScholarPubMed
Krishnan, KR, Charles, HC, Doraiswamy, PM, Mintzer, J, Weisler, R, Yu, X, et al. Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer's disease. Am J Psychiatry 2003; 160: 2003–11.CrossRefGoogle ScholarPubMed
Jessen, F, Traeber, F, Freymann, K, Maier, W, Schild, HH, Block, W. Treatment monitoring and response prediction with proton MR spectroscopy in AD. Neurology 2006; 67: 528–30.CrossRefGoogle ScholarPubMed
Hetherington, HP, Pan, JW, Mason, GF, Adams, D, Vaughn, MJ, Twieg, DB, et al. Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 1996; 36: 21–9.CrossRefGoogle Scholar
Schuff, N, Ezekiel, F, Gamst, AC, Amend, DL, Capizzano, AA, Maudsley, AA, et al. Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magn Reson Med 2001; 45: 899–907.CrossRefGoogle ScholarPubMed
Knopman, DS, DeKosky, ST, Cummings, JL, Chui, H, Corey-Bloom, J, Relkin, N, et al. Practice parameter: Diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001; 56: 1143–53.CrossRefGoogle ScholarPubMed
Small, GW, Bookheimer, SY, Thompson, PM, Cole, GM, Huang, SC, Kepe, V, et al. Current and future uses of neuroimaging for cognitively impaired patients. Lancet Neurol 2008; 7: 161–72.CrossRefGoogle ScholarPubMed
Moorhouse, P, Rockwood, K. Vascular cognitive impairment: Current concepts and clinical developments. Lancet Neurol 2008; 7: 246–55.CrossRefGoogle ScholarPubMed
Nagata, K, Saito, H, Ueno, T, Sato, M, Nakase, T, Maeda, T, et al. Clinical diagnosis of vascular dementia. J Neurol Sci 2007; 257: 44–8.CrossRefGoogle ScholarPubMed
Wetterling, T, Kanitz, RD, Borgis, KJ. Comparison of different diagnostic criteria for vascular dementia (ADDTC, DSM-IV, ICD-10, NINDS-AIREN). Stroke 1996; 27: 30–6.CrossRefGoogle Scholar
Chui, HC, Victoroff, JI, Margolin, D, Jagust, W, Shankle, R, Katzman, R. Criteria for the diagnosis of ischemic vascular dementia proposed by the State of California Alzheimer's Disease Diagnostic and Treatment Centers. Neurology 1992; 42: 473–80.CrossRefGoogle Scholar
Roman, GC, Tatemichi, TK, Erkinjuntti, T, Cummings, JL, Masdeu, JC, Garcia, JH, et al. Vascular dementia: Diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993; 43: 250–60.CrossRefGoogle ScholarPubMed
Holmes, C, Cairns, N, Lantos, P, Mann, A. Validity of current clinical criteria for Alzheimer's disease, vascular dementia and dementia with Lewy bodies. Br J Psychiatry 1999; 174: 45–50.CrossRefGoogle ScholarPubMed
Victoroff, J, Mack, WJ, Lyness, SA, Chui, HC. Multicenter clinicopathological correlation in dementia. Am J Psychiatry 1995; 152: 1476–84.Google ScholarPubMed
Chui, HC. Subcortical ischemic vascular dementia. Neurol Clin 2007; 25: 717–40, vi.CrossRefGoogle ScholarPubMed
Straaten, EC, Scheltens, P, Barkhof, F. MRI and CT in the diagnosis of vascular dementia. J Neurol Sci 2004; 226: 9–12.CrossRefGoogle Scholar
Guermazi, A, Miaux, Y, Rovira-Canellas, A, Suhy, J, Pauls, J, Lopez, R, et al. Neuroradiological findings in vascular dementia. Neuroradiology 2007; 49: 1–22.CrossRefGoogle ScholarPubMed
Mori, E, Ishii, K, Hashimoto, M, Imamura, T, Hirono, N, Kitagaki, H. Role of functional brain imaging in the evaluation of vascular dementia. Alzheimer Dis Assoc Disord 1999; 13(Suppl 3): S91–101.Google ScholarPubMed
Hsu, YY, Schuff, N, Amend, DL, Du, AT, Norman, D, Chui, HC, et al. Quantitative magnetic resonance imaging differences between Alzheimer disease with and without subcortical lacunes. Alzheimer Dis Assoc Disord 2002; 16: 58–64.CrossRefGoogle ScholarPubMed
Pantoni, L, Garcia, JH. The significance of cerebral white matter abnormalities 100 years after Binswanger's report. A review. Stroke 1995; 26: 1293–301.CrossRefGoogle ScholarPubMed
Hunt, AL, Orrison, WW, Yeo, RA, Haaland, KY, Rhyne, RL, Garry, PJ, et al. Clinical significance of MRI white matter lesions in the elderly. Neurology 1989; 39: 1470–4.CrossRefGoogle ScholarPubMed
Meyer, JS, Kawamura, J, Terayama, Y. White matter lesions in the elderly. [Review]. J Neurol Sci 1992; 110: 1–7.CrossRefGoogle Scholar
Schmidt, R, Hayn, M, Fazekas, F, Kapeller, P, Esterbauer, H. Magnetic resonance imaging white matter hyperintensities in clinically normal elderly individuals. Correlations with plasma concentrations of naturally occurring antioxidants. Stroke 1996; 27: 2043–7.CrossRefGoogle ScholarPubMed
Malloy, P, Correia, S, Stebbins, G, Laidlaw, DH. Neuroimaging of white matter in aging and dementia. Clin Neuropsychol 2007; 21: 73–109.CrossRefGoogle ScholarPubMed
Urresta, FL, Medina, DA, Gaviria, M. Diffusion MRI studies in vascular cognitive impairment and dementia. Rev Bras Psiquiatr 2003; 25: 188–91.CrossRefGoogle ScholarPubMed
Hanyu, H, Imon, Y, Sakurai, H, Iwamoto, T, Takasaki, M, Shindo, H, et al. Regional differences in diffusion abnormality in cerebral white matter lesions in patients with vascular dementia of the Binswanger type and Alzheimer's disease. Eur J Neurol 1999; 6: 195–203.CrossRefGoogle ScholarPubMed
Kattapong, VJ, Brooks, WM, Wesley, MH, Kodituwakku, PW, Rosenberg, GA. Proton magnetic resonance spectroscopy of vascular- and Alzheimer-type dementia. Arch Neuro 1996; 53: 678–80.CrossRefGoogle ScholarPubMed
MacKay, S, Meyerhoff, DJ, Constans, JM, Norman, D, Fein, G, Weiner, MW. Regional gray and white matter metabolite differences in subjects with AD, with subcortical ischemic vascular dementia, and elderly controls with 1H magnetic resonance spectroscopic imaging. Arch Neurol 1996; 53: 167–74.CrossRefGoogle ScholarPubMed
Auer, DP, Schirmer, T, Heidenreich, JO, Herzog, J, Putz, B, Dichgans, M. Altered white and gray matter metabolism in CADASIL: A proton MR spectroscopy and 1H-MRSI study. Neurology 2001; 56: 635–42.CrossRefGoogle ScholarPubMed
McKhann, GM, Albert, MS, Grossman, M, Miller, B, Dickson, D, Trojanowski, JQ. Clinical and pathological diagnosis of frontotemporal dementia: Report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 2001; 58: 1803–09.CrossRefGoogle ScholarPubMed
Boxer, AL, Miller, BL. Clinical features of frontotemporal dementia. Alzheimer Dis Assoc Disord 2005; 19(Suppl 1): S3–6.CrossRefGoogle ScholarPubMed
Knibb, JA, Kipps, CM, Hodges, JR. Frontotemporal dementia. Curr Opin Neurol 2006; 19: 565–71.CrossRefGoogle ScholarPubMed
Rosen, HJ, Gorno-Tempini, MI, Goldman, WP, Perry, RJ, Schuff, N, Weiner, M, et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 2002; 58: 198–208.CrossRefGoogle ScholarPubMed
Rosen, HJ, Kramer, JH, Gorno-Tempini, MI, Schuff, N, Weiner, M, Miller, BL. Patterns of cerebral atrophy in primary progressive aphasia. Am J Geriatr Psychiatry 2002; 10: 89–97.CrossRefGoogle ScholarPubMed
Josephs, KA, Whitwell, JL, Jack, CR, Parisi, JE, Dickson, DW. Frontotemporal lobar degeneration without lobar atrophy. Arch Neurol 2006; 63: 1632–8.CrossRefGoogle ScholarPubMed
Whitwell, JL, Jack, CR, Jr., Baker, M, Rademakers, R, Adamson, J, Boeve, BF, et al. Voxel-based morphometry in frontotemporal lobar degeneration with ubiquitin-positive inclusions with and without progranulin mutations. Arch Neurol 2007; 64: 371–6.CrossRefGoogle ScholarPubMed
Rabinovici, GD, Seeley, WW, Kim, EJ, Gorno-Tempini, MI, Rascovsky, K, Pagliaro, TA, et al. Distinct MRI atrophy patterns in autopsy-proven Alzheimer's disease and frontotemporal lobar degeneration. Am J Alzheimers Dis Other Demen 2007; 22: 474–88.CrossRefGoogle ScholarPubMed
Coulthard, E, Firbank, M, English, P, Welch, J, Birchall, D, O'Brien, J, et al. Proton magnetic resonance spectroscopy in frontotemporal dementia. J Neurol 2006; 253: 861–8.CrossRefGoogle ScholarPubMed
McKeith, IG. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the Consortium on DLB International Workshop. J Alzheimers Dis 2006; 9: 417–23.CrossRefGoogle Scholar
Gomez-Tortosa, E, Irizarry, MC, Gomez-Isla, T, Hyman, BT. Clinical and neuropathological correlates of dementia with Lewy bodies. Ann NY Acad Sci 2000; 920: 9–15.Google ScholarPubMed
Gomez-Isla, T, Growdon, WB, McNamara, M, Newell, K, Gomez-Tortosa, E, Hedley-Whyte, ET, et al. Clinicopathologic correlates in temporal cortex in dementia with Lewy bodies. Neurology 1999; 53: 2003–09.CrossRefGoogle ScholarPubMed
McKeith, I, Mintzer, J, Aarsland, D, Burn, D, Chiu, H, Cohen-Mansfield, J, et al. Dementia with Lewy bodies. Lancet Neurol 2004; 3: 19–28.CrossRefGoogle ScholarPubMed
Geser, F, Wenning, GK, Poewe, W, McKeith, I. How to diagnose dementia with Lewy bodies: State of the art. Mov Disord 2005; 20(Suppl 12): S11–20.CrossRefGoogle ScholarPubMed
Whitwell, JL, Weigand, SD, Shiung, MM, Boeve, BF, Ferman, TJ, Smith, GE, et al. Focal atrophy in dementia with Lewy bodies on MRI: A distinct pattern from Alzheimer's disease. Brain 2007; 130: 708–19.CrossRefGoogle ScholarPubMed
Burton, EJ, Karas, G, Paling, SM, Barber, R, Williams, ED, Ballard, CG, et al. Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage 2002; 17: 618–30.CrossRefGoogle ScholarPubMed
Jankovic, J. Parkinson's disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79: 368–76.CrossRefGoogle ScholarPubMed
Bjorklund, A, Dunnett, SB. Dopamine neuron systems in the brain: An update. Trends Neurosci 2007; 30: 194–202.CrossRefGoogle ScholarPubMed
Masliah, E, Rockenstein, E, Veinbergs, I, Mallory, M, Hashimoto, M, Takeda, A, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: Implications for neurodegenerative disorders. Science 2000; 287: 1265–9.CrossRefGoogle ScholarPubMed
Gerlach, M, Double, K, Riederer, P, Hirsch, E, Jellinger, K, Jenner, P, et al. Iron in the Parkinsonian substantia nigra. Mov Disord 1997; 12: 258–60.Google ScholarPubMed
Hsu, LJ, Sagara, Y, Arroyo, A, Rockenstein, E, Sisk, A, Mallory, M, et al. alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 2000; 157: 401–10.CrossRefGoogle ScholarPubMed
Jenner, P, Olanow, CW. The pathogenesis of cell death in Parkinson's disease. Neurology 2006; 66: S24–S36.CrossRefGoogle ScholarPubMed
Tolosa, E, Wenning, G, Poewe, W. The diagnosis of Parkinson's disease. Lancet Neurol 2006; 5: 75–86.CrossRefGoogle Scholar
Tintner, R, Jankovic, J. Treatment options for Parkinson's disease. Curr Opin Neurol 2002; 15: 467–76.CrossRefGoogle ScholarPubMed
Limousin, P, Martinez-Torres, I. Deep brain stimulation for Parkinson's disease. Neurotherapeutics 2008; 5: 309–19.CrossRefGoogle ScholarPubMed
Rao, G, Fisch, L, Srinivasan, S, D'Amico, F, Okada, T, Eaton, C, et al. Does this patient have Parkinson disease? J Am Med Assoc 2003; 289: 347–53.CrossRefGoogle ScholarPubMed
Hughes, AJ, Daniel, SE, Ben-Shlomo, Y, Lees, AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002; 125: 861–70.CrossRefGoogle Scholar
Litvan, I, Bhatia, KP, Burn, DJ, Goetz, CG, Lang, AE, McKeith, I, et al. Movement Disorders Society Scientific Issues Committee report: SIC Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord 2003; 18: 467–86.CrossRefGoogle ScholarPubMed
Seppi, K, Schocke, MF. An update on conventional and advanced magnetic resonance imaging techniques in the differential diagnosis of neurodegenerative parkinsonism. Curr Opin Neurol 2005; 18: 370–5.CrossRefGoogle ScholarPubMed
Savoiardo, M. Differential diagnosis of Parkinson's disease and atypical parkinsonian disorders by magnetic resonance imaging. Neurol Sci 2003; 24(Suppl 1): S35–7.CrossRefGoogle ScholarPubMed
Brenneis, C, Seppi, K, Schocke, MF, Muller, J, Luginger, E, Bosch, S, et al. Voxel-based morphometry detects cortical atrophy in the Parkinson variant of multiple system atrophy. Mov Disord 2003; 18: 1132–8.CrossRefGoogle ScholarPubMed
Lee, EA, Cho, HI, Kim, SS, Lee, WY. Comparison of magnetic resonance imaging in subtypes of multiple system atrophy. Parkinsonism Relat Disord 2004; 10: 363–8.CrossRefGoogle ScholarPubMed
Seppi, K, Schocke, MF, Wenning, GK, Poewe, W. How to diagnose MSA early: The role of magnetic resonance imaging. J Neural Transm 2005; 112: 1625–34.CrossRefGoogle ScholarPubMed
Quattrone, A, Nicoletti, G, Messina, D, Fera, F, Condino, F, Pugliese, P, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 2008; 246: 214–21.CrossRefGoogle ScholarPubMed
Davie, C. The role of spectroscopy in parkinsonism [Editorial; Comment]. Mov Disord 1998; 13: 2–4.CrossRefGoogle Scholar
Clarke, CE, Lowry, M. Systematic review of proton magnetic resonance spectroscopy of the striatum in parkinsonian syndromes. Eur J Neurol 2001; 8: 573–7.CrossRefGoogle ScholarPubMed
Oz, G, Terpstra, M, Tkac, I, Aia, P, Lowary, J, Tuite, PJ, et al. Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: Detection of high GABA concentrations. Magn Reson Med 2006; 55: 296–301.CrossRefGoogle Scholar
Davie, CA, Wenning, GK, Barker, GJ, Tofts, PS, Kendall, BE, Quinn, N, et al. Differentiation of multiple system atrophy from idiopathic Parkinson's disease using proton magnetic resonance spectroscopy. Ann Neurol 1995; 37: 204–10.CrossRefGoogle ScholarPubMed
Federico, F, Simone, IL, Lucivero, V, Mezzapesa, DM, De, MM, Lamberti, P, et al. Usefulness of proton magnetic resonance spectroscopy in differentiating parkinsonian syndromes. Ital J Neurol Sci 1999; 20: 223–9.CrossRefGoogle ScholarPubMed
Clarke, CE, Lowry, M. Basal ganglia metabolite concentrations in idiopathic Parkinson's disease and multiple system atrophy measured by proton magnetic resonance spectroscopy. Eur J Neurol 2000; 7: 661–5.CrossRefGoogle ScholarPubMed
Watanabe, H, Fukatsu, H, Katsuno, M, Sugiura, M, Hamada, K, Okada, Y, et al. Multiple regional 1H-MR spectroscopy in multiple system atrophy: NAA/Cr reduction in pontine base as a valuable diagnostic marker. J Neurol Neurosurg Psychiatry 2004; 75: 103–09.Google ScholarPubMed
Tedeschi, G, Litvan, I, Bonavita, S, Bertolino, A, Lundbom, N, Patronas, NJ, et al. Proton magnetic resonance spectroscopic imaging in progressive supranuclear palsy, Parkinson's disease and corticobasal degeneration. Brain 1997; 120: 1541–52.CrossRefGoogle ScholarPubMed
Ross, BD, Hoang, TQ, Bluml, S, Dubowitz, D, Kopyov, OV, Jacques, DB, et al. In vivo magnetic resonance spectroscopy of human fetal neural transplants. NMR Biomed 1999; 12: 221–36.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Walker, FO. Huntington's disease. Lancet 2007; 20: 218–28.CrossRefGoogle Scholar
Ramaswamy, S, Shannon, KM, Kordower, JH. Huntington's disease: Pathological mechanisms and therapeutic strategies. Cell Transplant 2007; 16: 301–12.CrossRefGoogle ScholarPubMed
Rosas, HD, Feigin, AS, Hersch, SM. Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington's disease. Neurorx 2004; 1: 263–72.CrossRefGoogle ScholarPubMed
Aylward, EH. Change in MRI striatal volumes as a biomarker in preclinical Huntington's disease. Brain Res Bull 2007; 72: 152–8.CrossRefGoogle ScholarPubMed
Aylward, EH, Codori, AM, Rosenblatt, A, Sherr, M, Brandt, J, Stine, OC, et al. Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington's disease. Mov Disord 2000; 15: 552–60.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Rosas, HD, Liu, AK, Hersch, S, Glessner, M, Ferrante, RJ, Salat, DH, et al. Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology 2002; 58: 695–701.CrossRefGoogle ScholarPubMed
Gomez-Anson, B, Alegret, M, Munoz, E, Monte, GC, Alayrach, E, Sanchez, A, et al. Prefrontal cortex volume reduction on MRI in preclinical Huntington's disease relates to visuomotor performance and CAG number. Parkinsonism Relat Disord 2008; 15: 213–9.CrossRefGoogle ScholarPubMed
Wolf, RC, Vasic, N, Schonfeldt-Lecuona, C, Ecker, D, Landwehrmeyer, GB. Cortical dysfunction in patients with Huntington's disease during working memory performance. Hum Brain Mapp 2009; 30: 327–39.CrossRefGoogle ScholarPubMed
Jech, R, Klempir, J, Vymazal, J, Zidovska, J, Klempirova, O, Ruzicka, E, et al. Variation of selective gray and white matter atrophy in Huntington's disease. Mov Disord 2007; 22: 1783–9.CrossRefGoogle ScholarPubMed
Rosas, HD, Hevelone, ND, Zaleta, AK, Greve, DN, Salat, DH, Fischl, B. Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 2005; 65: 745–7.CrossRefGoogle Scholar
Rosas, HD, Salat, DH, Lee, SY, Zaleta, AK, Pappu, V, Fischl, B, et al. Cerebral cortex and the clinical expression of Huntington's disease: Complexity and heterogeneity. Brain 2008; 131: 1057–68.CrossRefGoogle ScholarPubMed
Jenkins, BG, Koroshetz, WJ, Beal, MF, Rosen, BR. Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy. Neurology 1993; 43: 2689–95.CrossRefGoogle ScholarPubMed
Koroshetz, WJ, Jenkins, BG, Rosen, BR, Beal, MF. Energy metabolism defects in Huntington's disease and effects of coenzyme Q10. Ann Neurol 1997; 41: 160–5.CrossRefGoogle ScholarPubMed
Davie, CA, Barker, GJ, Quinn, N, Tofts, PS, Miller, DH. Proton MRS in Huntington's disease [Letter; Comment]. Lancet 1994; 343: 1580.CrossRefGoogle Scholar
Jenkins, BG, Rosas, HD, Chen, YC, Makabe, T, Myers, R, MacDonald, M, et al. 1H NMR spectroscopy studies of Huntington's disease: Correlations with CAG repeat numbers. Neurology 1998; 50: 1357–65.CrossRefGoogle ScholarPubMed
Taylor-Robinson, SD, Weeks, RA, Bryant, DJ, Sargentoni, J, Marcus, CD, Harding, AE, et al. Proton magnetic resonance spectroscopy in Huntington's disease: Evidence in favour of the glutamate excitotoxic theory. Mov Disord 1996; 11: 167–73.CrossRefGoogle ScholarPubMed
Ross, BD. Re: Long-term fetal cell transplant in Huntington disease: Stayin' alive. Neurology 2008; 70: 815–6.CrossRefGoogle ScholarPubMed
McKintosh, E, Tabrizi, SJ, Collinge, J. Prion diseases. J Neurovirol 2003; 9: 183–93.CrossRefGoogle ScholarPubMed
Prusiner, SB. The prion diseases. Brain Pathol 1998; 8: 499–513.CrossRefGoogle ScholarPubMed
Collinge, J. Inherited prion diseases. Adv Neurol 1993; 61: 155–65.Google ScholarPubMed
Collins, S, Boyd, A, Fletcher, A, Gonzales, MF, McLean, CA, Masters, CL. Recent advances in the pre-mortem diagnosis of Creutzfeldt–Jakob disease. J Clin Neurosci 2000; 7: 195–202.CrossRefGoogle ScholarPubMed
Wieser, HG, Schindler, K, Zumsteg, D. EEG in Creutzfeldt–Jakob disease. Clin Neurophysiol 2006; 117: 935–51.CrossRefGoogle ScholarPubMed
Green, AJ. Cerebrospinal fluid brain-derived proteins in the diagnosis of Alzheimer's disease and Creutzfeldt–Jakob disease. Neuropathol Appl Neurobiol 2002; 28: 427–40.CrossRefGoogle Scholar
Wada, R, Kucharczyk, W. Prion infections of the brain. Neuroimaging Clin N Am 2008; 18: 183–91.CrossRefGoogle Scholar
Behar, KL, Boucher, R, Fritch, W, Manuelidis, L. Changes in N-acetylaspartate and myo-inositol detected in the cerebral cortex of hamsters with Creutzfeldt–Jakob disease. Magn Reson Imag 1998; 16: 963–8.CrossRefGoogle ScholarPubMed
Waldman, AD, Cordery, RJ, MacManus, DG, Godbolt, A, Collinge, J, Rossor, MN. Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy. Neuroradiology 2006; 48: 428–33.CrossRefGoogle ScholarPubMed
Stewart, , Rydzewska, LH, Keogh, GF, Knight, RS. Systematic review of therapeutic interventions in human prion disease. Neurology 2008; 70: 1272–81.CrossRefGoogle ScholarPubMed
Mitchell, JD, Borasio, GD. Amyotrophic lateral sclerosis. Lancet 2007; 369: 2031–41.CrossRefGoogle ScholarPubMed
Lomen-Hoerth, C. Amyotrophic lateral sclerosis from bench to bedside. Semin Neurol 2008; 28: 205–11.CrossRefGoogle ScholarPubMed
Meininger, V, Lacomblez, L, Salachas, F. What has changed with riluzole? J Neurol 2000; 247: 19–22.CrossRefGoogle ScholarPubMed
Rowland, LP. Diagnosis of amyotrophic lateral sclerosis. J Neurol Sci 1998; 160(Suppl 1): S6–24.CrossRefGoogle ScholarPubMed
Cudkowicz, M, Qureshi, M, Shefner, J. Measures and markers in amyotrophic lateral sclerosis. Neurorx 2004; 1: 273–83.CrossRefGoogle ScholarPubMed
Abe, K. MRI in ALS: Corticospinal tract hyperintensity. Neurology 2004; 63: 596–7.Google ScholarPubMed
Zhang, L, Ulug, AM, Zimmerman, RD, Lin, MT, Rubin, M, Beal, MF. The diagnostic utility of FLAIR imaging in clinically verified amyotrophic lateral sclerosis. J Magn Reson Imag 2003; 17: 521–7.CrossRefGoogle ScholarPubMed
Yin, H, Cheng, SH, Zhang, J, Ma, L, Gao, Y, Li, D, et al. Corticospinal tract degeneration in amyotrophic lateral sclerosis: A diffusion tensor imaging and fibre tractography study. Ann Acad Med Singapore 2008; 37: 411–5.Google ScholarPubMed
Sage, CA, Peeters, RR, Gorner, A, Robberecht, W, Sunaert, S. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 2007; 34: 486–99.CrossRefGoogle ScholarPubMed
Kassubek, J, Unrath, A, Huppertz, HJ, Lule, D, Ethofer, T, Sperfeld, AD, et al. Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI. Amyotroph Lateral Scler Other Motor Neuron Disord 2005; 6: 213–20.CrossRefGoogle ScholarPubMed
Cabello, JP, Riverol, M, Masdeu, JC. ALS corticospinal degeneration on DWI. Neurology 2004; 62: 1834.CrossRefGoogle ScholarPubMed
Mezzapesa, DM, Ceccarelli, A, Dicuonzo, F, Carella, A, Caro, MF, Lopez, M, et al. Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis. Am J Neuroradiol 2007; 28: 255–9.Google ScholarPubMed
Pioro, EP, Antel, JP, Cashman, NR, Arnold, DL. Detection of cortical neuronal loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo. Neurology 1994; 44: 1933–8.CrossRefGoogle Scholar
Kalra, S, Arnold, DL. ALS surrogate markers. MRS. Amyotroph Lateral Scler Other Motor Neuron Disord 2004; 5(Suppl 1): 111–4.CrossRefGoogle ScholarPubMed
Kalra, S, Hanstock, CC, Martin, WR, Allen, PS, Johnston, WS. Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. Arch Neurol 2006; 63: 1144–8.CrossRefGoogle ScholarPubMed
Kalra, S, Tai, P, Genge, A, Arnold, DL. Rapid improvement in cortical neuronal integrity in amyotrophic lateral sclerosis detected by proton magnetic resonance spectroscopic imaging. J Neurol 2006; 253: 1060–3.CrossRefGoogle ScholarPubMed
Kalra, S, Cashman, NR, Genge, A, Arnold, DL. Recovery of N-acetylaspartate in corticomotor neurons of patients with ALS after riluzole therapy. Neuroreport 1998; 9: 1757–61.CrossRefGoogle ScholarPubMed
Dubois, B, Feldman, HH, Jacova, C, et al. Research criteria for the diagnosis of Alzheimer's disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol 2007; 6: 734–46.CrossRefGoogle Scholar
Sach, M, Winkler, G, Glauche, V, Liepert, J, Heimbach, B, Koch, MA, et al. Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 2004; 127: 340–50.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×