Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-16T11:58:39.760Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 June 2012

Malcolm S. Longair
Affiliation:
University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, M. & Mould, J. (1983). A distance scale from the infrared magnitude/H I velocity-width relation. IV – The morphological type dependence and scatter in the relation; the distances to nearby groups, Astrophysical Journal, 265, 1–17.CrossRefGoogle Scholar
Abdo, A. A., Ackermann, M., Ajello, M., et al. (2009a). Early Fermi Gamma-Ray Space Telescope observations of the quasar 3C 454.3, Astrophysical Journal, 699, 817–823.CrossRefGoogle Scholar
Abdo, A. A., Ackermann, M., Ajello, M., et al. (2009b). Bright active galactic nuclei source list from the first three months of the Fermi Large Area Telescope All-Sky Survey, Astrophysical Journal, 700, 597–622.CrossRefGoogle Scholar
Abdurashitov, J. N., Bowles, T. J., Cleveland, B. T., et al. (2003). Measurement of the solar neutrino capture rate in SAGE, Nuclear Physics B Proceedings Supplements, 118, 39–46.CrossRefGoogle Scholar
Abdurashitov, J. N., Veretenkin, E. P., Vermul, V. M., et al. (2002). Solar neutrino flux measurements by the Soviet–American Gallium Experiment (SAGE) for half the 22- year solar cycle, Soviet Journal of Experimental and Theoretical Physics, 95, 181–193.CrossRefGoogle Scholar
Abell, G. O. (1958). The distribution of rich clusters of galaxies, Astrophysical Journal Supplement, 3, 221–288.CrossRefGoogle Scholar
Abell, G. O., Corwin Jr, H. G., & Olowin, R. P. (1989). A catalogue of rich clusters of galaxies, Astrophysical Journal Supplement, 70, 1–138.CrossRefGoogle Scholar
Abraham, J., Abreu, P., Aglietta, M., & Pierre, Auger Collaboration (2010a). Measurement of the depth of maximum of extensive air showers above 1018 eV, Physical Review Letters, 104, 091101 1–7.Google Scholar
Abraham, J., Abreu, P., Aglietta, M., & Pierre Auger Collaboration (2010b). Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Array, Physics Letters B, 685, 239–246.CrossRefGoogle Scholar
Abraham, R. G., Tanvir, N. R., Santiago, B., et al. (1996). Galaxy morphology to I = 25 mag in the Hubble Deep Field, Monthly Notices of the Royal Astronomical Society, 279, L47–L52.CrossRefGoogle Scholar
Abramovitz, M. & Stegun, I. A. (1965). Handbook of Mathematical Functions. New York: Dover.Google Scholar
Abramowicz, M. A., Jaroszyński, M., & Sikora, M. (1978). Relativistic, accreting disks, Astronomy and Astrophysics, 63, 221–224.Google Scholar
Adams, F. C., Lada, C. J., & Shu, F. H. (1987). Spectral evolution of young stellar objects, Astrophysical Journal, 312, 788–806.CrossRefGoogle Scholar
Adams, F. C. & Shu, F. H. (1985). Infrared emission from protostars, Astrophysical Journal, 296, 655–669.CrossRefGoogle Scholar
Afonso, C., Albert, J. N., Andersen, J., et al. (2003). Limits on Galactic dark matter with 5 years of EROS SMC data, Astronomy and Astrophysics, 400, 951–956.CrossRefGoogle Scholar
Aharonian, F., Akhperjanian, A. G., Anton, G., et al. (2009). Simultaneous observations of PKS 2155–304 with HESS, Fermi, RXTE, and Atom: Spectral energy distributions and variability in a low state, Astrophysical Journal Letters, 696, L150– L155.CrossRefGoogle Scholar
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (2007a). An Exceptional very high energy gamma-ray flare of PKS 2155–304, Astrophysical Journal Letters, 664, L71–L74.CrossRefGoogle Scholar
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (2006). A low level of extragalactic background light as revealed by γ -rays from blazars, Nature, 440, 1018– 1021.CrossRefGoogle ScholarPubMed
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (2007b). H.E.S.S. Observations of the supernova remnant RX J0852.0–4622: Shell-type morphology and spectrum of a widely extended very high energy gamma-ray source, Astrophysical Journal, 661, 236–249.CrossRefGoogle Scholar
Aharonian, F. A., Akhperjanian, A. G., Aye, K.-M., et al. (2004). High-energy particle acceleration in the shell of a supernova remnant, Nature, 432, 75–77.CrossRefGoogle ScholarPubMed
Ahmad, Q. R., Allen, R. C., Andersen, T. C., et al. (2002). Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Physical Review Letters, 89, 011301.CrossRefGoogle ScholarPubMed
Aitken, D. K., Smith, C. H., James, S. D., et al. (1988). 10 micron spectral observations of SN 1987A – The first year, Monthly Notices of the Royal Astronomical Society, 235, 19P–31P.CrossRefGoogle Scholar
Akerib, D. S., Attisha, M. J., Bailey, C. N., et al. (2006). Limits on spin-independent interactions of weakly interacting massive particles with nucleons from the Two-Tower run of the Cryogenic Dark Matter Search, Physical Review Letters, 96, 011302.CrossRefGoogle ScholarPubMed
Alcock, C., Akerlof, C. W., Allsman, R. A., et al. (1993a). Possible gravitational microlensing of a star in the Large Magellanic Cloud, Nature, 365, 621–623.CrossRefGoogle Scholar
Alcock, C., Allsman, R. A., Alves, D. R., et al. (2000). The MACHO project:Microlensing results from 5.7 years of Large Magellanic Cloud observations, Astrophysical Journal, 542, 281–307.CrossRefGoogle Scholar
Alcock, C., Allsman, R. A., Axelrod, T. S., et al. (1993b). The MACHO project – A search for the dark matter in the Milky Way, in Sky Surveys: Protostars to Protogalaxies, ed. Soifer, T., pp. 291–296. San Francisco: Astronomical Society of the Pacific Conference Series.Google Scholar
Alexander, P. (2006). Models of young powerful radio sources, Monthly Notices of the Royal Astronomical Society, 368, 1404–1410.CrossRefGoogle Scholar
Alexander, P., Brown, M. T., & Scott, P. F. (1984). A multi-frequency radio study of Cygnus A, Monthly Notices of the Royal Astronomical Society, 209, 851–868.CrossRefGoogle Scholar
Alfvén, H. & Herlofson, N. (1950). Cosmic radiation and radio stars, Physical Review, 78, 616.CrossRefGoogle Scholar
Aliu, E., Andringa, S., Aoki, S., et al. (2005). Evidence for muon neutrino oscillation in an accelerator-based experiment, Physical Review Letters, 94(8), 081802.CrossRefGoogle Scholar
Aloisio, R., Berezinsky, V., & Gazizov, A. (2009). Ultra high energy cosmic rays: The disappointing model, in ArXiv e-print 0907.5194.Google Scholar
Amsler, C., Doser, M., Antonelli, M., et al. (2008). Review of particle physics, Physics Letters B, 667, 1–5. These data can be found at http://pdg.IbI.gov.CrossRefGoogle Scholar
Anderson, C. (1932). The apparent existence of easily deflected positives, Science, 76, 238–239.CrossRefGoogle Scholar
Anderson, C. & Neddermeyer, S. (1936). Cloud chamber observations of cosmic rays at 4300 metres elevation and near sea-level, Physical Review, 50, 263–271.CrossRefGoogle Scholar
Antoni, T., Apel, W. D., Badea, A. F., et al. (2005). KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems, Astroparticle Physics, 24, 1–25.CrossRefGoogle Scholar
Antonucci, R. R. (1993). Unified models for active galactic nuclei and quasars, Annual Review of Astronomy and Astrophysics, 31, 473–521.CrossRefGoogle Scholar
Antonucci, R. R., & Miller, J. S. (1985). Spectropolarimetry and the nature of NGC 1068, Astrophysical Journal, 297, 621–632.CrossRefGoogle Scholar
Arnett, D. (2004). Stellar nucleosynthesis: A status report 2003, in Origin and Evolution of the Elements, eds McWilliam, A. & Rauch, M., pp. 12–26. Cambridge: Cambridge University Press.Google Scholar
Arnett, W. D. & Clayton, D. D. (1970). Explosive nucleosynthesis in stars, Nature, 227, 780–784.CrossRefGoogle ScholarPubMed
Arzoumanian, Z., Chernoff, D. F., & Cordes, J. M. (2002). The velocity distribution of isolated radio pulsars, Astrophysical Journal, 568, 289–301.CrossRefGoogle Scholar
Ashie, Y., Hosaka, J., Ishihara, K., et al. (2005). Measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I, Physical Review D, 71, 112005.CrossRefGoogle Scholar
Aublin, J. D. (2009). Disciminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory, in Proceedings of the 31st International Cosmic Ray Conference (Lodz, Poland), ArXiv: 0906.2347v2 [astro-ph.E].Google Scholar
Auger, P., Ehrenfest, P. Jr., Maze, R., et al. (1939). Extensive air showers, Reviews of Modern Physics, 11, 288–291.CrossRefGoogle Scholar
Axford, W. I., Leer, E., & Skadron, G. (1977). The acceleration of cosmic rays by shock waves, Proceedings of the 15th International Cosmic Ray Conference, 11, 132– 135.Google Scholar
Baade, W. & Minkowski, R. (1954). Identification of the radio sources in Cassiopeia, Cygnus A, and Puppis A, Astrophysical Journal, 119, 206–214.CrossRefGoogle Scholar
Babbedge, T. S. R., Rowan-Robinson, M., Vaccari, M., et al. (2006). Luminosity functions for galaxies and quasars in the Spitzer Wide-area Infrared Extragalactic Legacy Survey, Monthly Notices of the Royal Astronomical Society, 370, 1159–1180.CrossRefGoogle Scholar
Backer, D. C., Kulkarni, S. R., Heiles, C., et al. (1982). A millisecond pulsar, Nature, 300, 615–618.CrossRefGoogle Scholar
Bahcall, J. N. (1989). Neutrino Astrophysics. Cambridge: Cambridge University Press.Google Scholar
Bahcall, J. N. & Bethe, H. (1990). Asolution of the solar neutrino problem, Physical Review Letters, 65, 2233–2235.CrossRefGoogle Scholar
Bahcall, J. N., Kirhakos, S., Saxe, D. H., et al. (1997a). Hubble Space Telescope images of a sample of 20 nearby luminous quasars, Astrophysical Journal, 479, 642–658.CrossRefGoogle Scholar
Bahcall, J. N., Pinsonneault, M. H., Basu, S., et al. (1997b). Are standard solar models reliable?, Physical Review Letters, 78, 171–174.CrossRefGoogle Scholar
Bahcall, N. A. (1977). Clusters of galaxies, Annual Review of Astronomy and Astrophysics, 15, 505–540.CrossRefGoogle Scholar
Bahcall, N. A., Dong, F., Hao, L., et al. (2003a). The richness-dependent cluster correlation function: Early Sloan Digital Sky Survey data, Astrophysical Journal, 599, 814– 819.CrossRefGoogle Scholar
Bahcall, N. A., McKay, T. A., Annis, J., et al. (2003b). A merged catalog of clusters of galaxies from early Sloan Digital Sky Survey data, Astrophysical Journal Supplement, 148, 243–274.CrossRefGoogle Scholar
Balbus, S. A. & Hawley, J. F. (1991). A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution, Astrophysical Journal, 376, 214–233.CrossRefGoogle Scholar
Baldry, I. K., Glazebrook, K., Brinkmann, J., et al. (2004). Quantifying the bimodal color – magnitude distribution of galaxies, Astrophysical Journal, 600, 681–694.CrossRefGoogle Scholar
Ballard, K. R. & Heavens, A. F. (1992). Shock acceleration and steep-spectrum synchrotron sources, Monthly Notices of the Royal Astronomical Society, 259, 89–94.CrossRefGoogle Scholar
Band, D. L. & Grindlay, J. E. (1985). The synchrotron–self-Compton process in spherical geometries. I. Theoretical framework, Astrophysical Journal, 298, 128–146.CrossRefGoogle Scholar
Barthel, P. D. (1989). Is every quasar beamed?, Astrophysical Journal, 336, 606–611.CrossRefGoogle Scholar
Barthel, P. D. (1994). Unified schemes of FR2 radio galaxies and quasars, in First Stromlo Symposium: Physics of Active Galactic Nuclei, eds Bicknell, G. V., Dopita, M. A., & Quinn, P. J., pp. 175–186. San Francisco: Astronomical Society of the Pacific Conference Series, Vol. 54.Google Scholar
Batchelor, G. (1970). An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press.Google Scholar
Bearden, J. A. & Burr, A. F. (1967). Reevaluation of X-ray atomic energy levels, Reviews of Modern Physics, 39, 125–142.CrossRefGoogle Scholar
Beck, R., Brandenburg, A., Moss, D., Shukurov, A., & Sokoloff, D. (1996). Galactic magnetism: Recent developments and perspectives, Annual Review of Astronomy and Astrophysics, 34, 155–206.CrossRefGoogle Scholar
Beck, R., Carilli, C. L., Holdaway, M. A., et al. (1994). Multifrequency observations of the radio continuum emission from NGC 253. 1: Magnetic fields and rotation measures in the bar and halo, Astronomy and Astrophysics, 292, 409–424.Google Scholar
Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., et al. (2006). The Hubble Ultra Deep Field, Astronomical Journal, 132, 1729–1755.CrossRefGoogle Scholar
Begelman, M. C. (1996). Baby Cygnus A's, in Cygnus A – Study of a Radio Galaxy, eds Carilli, C. L. and Harris, D. E., pp. 209–214. Cambridge: Cambridge University Press.Google Scholar
Bekefi, G. (1966). Radiation Processes in Plasmas. New York: John Wiley.Google Scholar
Bell, A. R. (1978). The acceleration of cosmic rays in shock fronts. I, Monthly Notices of the Royal Astronomical Society, 182, 147–156.CrossRefGoogle Scholar
Bell, A. R. (2004). Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays, Monthly Notices of the Royal Astronomical Society, 353, 550–558.CrossRefGoogle Scholar
Bell, A. R. (2005). The interaction of cosmic rays and magnetized plasma, Monthly Notices of the Royal Astronomical Society, 358, 181–187.CrossRefGoogle Scholar
Bell, A. R. & Lucek, S. G. (2001). Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field, Monthly Notices of the Royal Astronomical Society, 321, 433–438.CrossRefGoogle Scholar
Bell, E. F. McIntosh, D. H., Katz, N., et al. (2003). The optical and near-infrared properties of galaxies: I. Luminosity and stellar mass functions, Astrophysical Journal Supplement Series, 149, 289–312.CrossRefGoogle Scholar
Bell-Burnell, J. (1983). The discovery of pulsars, in Serendipitous Discoveries in Radio Astronomy, eds Kellermann, K. & Sheets, B., pp. 160–170. Green Bank: West Virginia: National Radio Astronomy Publications.Google Scholar
Bender, R., Burstein, D., & Faber, S. M. (1993). Dynamically hot galaxies ii. Global stellar populations, Astrophysical Journal, 411, 153–169.CrossRefGoogle Scholar
Bennett, C., Halpern, M., Hinshaw, G., et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results, Astrophysical Journal Supplement Series, 148, 1–27.CrossRefGoogle Scholar
Bennett, C. L., Banday, A. J., Gorski, K. M., et al. (1996). Four-year COBE DMR Cosmic Microwave Background observations: Maps and basic results, Astrophysical Journal, 464, L1–L4.CrossRefGoogle Scholar
Benson, B. A., Church, S. E., Ade, P. A. R., et al. (2004). Measurements of Sunyaev – Zel'dovich effect scaling relations for clusters of galaxies, Astrophysical Journal, 617, 829–846.CrossRefGoogle Scholar
Beresnyak, A., Jones, T. W., & Lazarian, A. (2009). Turbulence-induced magnetic fields and the structure of cosmic ray modified shocks, Astrophysical Journal, 707, 1541– 1549.CrossRefGoogle Scholar
Berezhko, E. G. & Völk, H. J. (2007). Spectrum of cosmic rays produced in supernova remnants, Astrophysical Journal Letters, 661, L175–L178.CrossRefGoogle Scholar
Berezinsky, V. (2007). On origin of ultra high energy cosmic rays, Astrophysics and Space Science, 309, 453–463.CrossRefGoogle Scholar
Berezinsky, V., Gazizov, A. & Grigorieva, S. (2006). On astrophysical solution to ultrahigh energy cosmic rays, Physical Review, D74, 043005, pp. 1–35.Google Scholar
Berger, K., Majumdar, P., Lindfors, E., et al. (2009). MAGIC observations of the distant quasar 3C 279 during an optical outburst in 2007, ArXiv e-prints 0907.1046.Google Scholar
Bertola, F., Bettoni, D., Danziger, J., et al. (1991). Testing the gravitational field in elliptical galaxies: NGC 5077, Astrophysical Journal, 373, 369–390.CrossRefGoogle Scholar
Bertola, F. & Galletta, G. (1979). Ellipticity and twisting of isophotes in elliptical galaxies, Astronomy and Astrophysics, 77, 363–365.Google Scholar
Best, P. N., Bailer, D. M., Longair, M. S., et al. (1995). Radio source asymmetries and unified schemes, Monthly Notices of the Royal Astronomical Society, 275, 1171–1184.CrossRefGoogle Scholar
Best, P. N., Longair, M. S., & Röttgering, H. J. A. (1996). Evolution of the aligned structures in z ∼ 1 radio galaxies, Monthly Notices of the Royal Astronomical Society, 280, L9–L12.CrossRefGoogle Scholar
Best, P. N., Longair, M. S., & Röttgering, H. J. A. (1997). HST, radio and infrared observations of 28 3CR radio galaxies at redshift z ∼ 1. I - The observations, Monthly Notices of the Royal Astronomical Society, 292, 758–794.CrossRefGoogle Scholar
Best, P. N., Longair, M. S., & Röttgering, H. J. A. (1998). HST, radio and infrared observations of 28 3CR radio galaxies at redshift z approximately equal to 1. II – Old stellar populations in central cluster galaxies, Monthly Notices of the Royal Astronomical Society, 295, 549–567.CrossRefGoogle Scholar
Best, P. N., Longair, M. S., & Röttgering, H. J. A. (2000). Ionization, shocks and evolution of the emission-line gas of distant 3CR radio galaxies, Monthly Notices of the Royal Astronomical Society, 311, 23–36.CrossRefGoogle Scholar
Bethe, H. & Heitler, W. (1934). On the stopping of fast particles and on the creation of positive electrons, Proceedings of the Royal Society of London, A146, 83– 112.Google Scholar
Béthermin, M., Dole, H., Beelen, A., et al. (2010). Spitzer deep and wide legacy mid- and far-infrared number counts and lower limits of cosmic infrared background, Astronomy and Astrophysics, 512, A78, 1–14.CrossRefGoogle Scholar
Bignami, G. F., Caraveo, P. A., Luca, A. D., et al. (2003). The magnetic field of an isolated neutron star from X-ray cyclotron absorption lines, Nature, 423, 725–727.CrossRefGoogle ScholarPubMed
Bildsten, L., Chakrabarty, D., Chiu, J., et al. (1997). Observations of accreting pulsars, Astrophysical Journal Supplement Series, 113, 367–408.CrossRefGoogle Scholar
Binney, J. (1978). On the rotation of elliptical galaxies, Monthly Notices of the Royal Astronomical Society, 183, 501–514.CrossRefGoogle Scholar
Binney, J. & Merrifield, M. (1998). Galactic Astronomy. Princeton: Princeton University Press.Google Scholar
Binney, J. & Tremaine, S. (2008). Galactic Dynamics. Princeton: Princeton University Press.CrossRefGoogle Scholar
Biretta, J. A., Sparks, W. B., & Macchetto, F. (1999). Hubble Space Telescope observations of superluminal motion in the M87 jet, Astrophysical Journal, 520, 621–626.CrossRefGoogle Scholar
Biretta, J. A., Zhou, F., & Owen, F. N. (1995). Detection of proper motions in the M87 jet, Astrophysical Journal, 447, 582–596.CrossRefGoogle Scholar
Blaauw, A., Gum, C. S., Pawsey, J. L., et al. (1959). Note: Definition of the new I.A.U. system of galactic co-ordinates, Astrophysical Journal, 130, 702–703.CrossRefGoogle Scholar
Blackett, P. & Occhialini, G. (1933). Some photographics of the tracks of penetrating radiation, Proceedings of the Royal Society of London, A139, 699–722.Google Scholar
Blain, A. W. & Longair, M. S. (1993). Sub-millimetre cosmology, Monthly Notices of the Royal Astronomical Society, 264, 509–521.CrossRefGoogle Scholar
Blain, A. W. & Longair, M. S. (1996). Observing strategies for blank-field surveys in the sub-millimetre waveband, Monthly Notices of the Royal Astronomical Society, 279, 847–858.CrossRefGoogle Scholar
Blandford, R. & Eichler, D. (1987). Particle acceleration at astrophysical shocks – A theory of cosmic-ray origin, Physics Reports, 154, 1–75.CrossRefGoogle Scholar
Blandford, R. D. (1990). Physical processes in active galactic nuclei, in Active Galactic Nuclei, eds Blandford, R. D., Netzer, H., Woltjer, L., et al. pp. 161–275, Saas–Fee Advanced Course 20. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Blandford, R. D. (1994). Holes, disks, stars and jets in active galactic nuclei, in The Physics of Active Galaxies, eds Bicknell, G. V. & Dopita, M. A., pp. 23–32. San Francisco: Astronomical Society of the Pacific Conference Series. Vol. 54.Google Scholar
Blandford, R. D. & Begelman, M. C. (1999). On the fate of gas accreting at a low rate onto a black hole, Monthly Notices of the Royal Astronomical Society, 303, L1–L5.CrossRefGoogle Scholar
Blandford, R. D. & McKee, C. F. (1982). Reverberation mapping of the emission line regions of Seyfert galaxies and quasars, Astrophysical Journal, 255, 419–439.CrossRefGoogle Scholar
Blandford, R. D. & Narayan, R. (1992). Cosmological applications of gravitational lensing, Annual Review of Astronomy and Astrophysics, 30, 311–358.CrossRefGoogle Scholar
Blandford, R. D. & Ostriker, J. P. (1978). Particle acceleration by astrophysical shocks, Astrophysical Journal, 221, L29–L32.CrossRefGoogle Scholar
Blandford, R. D. & Rees, M. J. (1974). A ‘twin-exhaust’ model for double radio sources, Monthly Notices of the Royal Astronomical Society, 169, 395–415.CrossRefGoogle Scholar
Blandford, R. D. & Znajek, R. L. (1977). Electromagnetic extraction of energy from Kerr black holes, Monthly Notices of the Royal Astronomical Society, 179, 433–456.CrossRefGoogle Scholar
Blanton, M., Hogg, D., Bahcall, N., et al. (2003). The galaxy luminosity function and luminosity density at redshift z = 0.1, Astrophysical Journal, 592, 819–838.CrossRefGoogle Scholar
Blanton, M. R., Hogg, D. W., Bahcall, N. A., et al. (2003). The broadband optical properties of galaxies with redshifts 0.02 ≤ z ≤ 0.22, Astrophysical Journal, 594, 186–207.CrossRefGoogle Scholar
Blumenthal, G. R. & Gould, R. J. (1970). Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases, Reviews of Modern Physics, 42, 237–271.CrossRefGoogle Scholar
Bolton, C. T. (1972). Identifications of CYG X-1 with HDE 226868, Nature, 235, 271– 273.CrossRefGoogle Scholar
Bondi, H. (1952). On spherically symmetrical accretion, Monthly Notices of the Royal Astronomical Society, 112, 195–204.CrossRefGoogle Scholar
Bondi, H. & Hoyle, F. (1944). On the mechanism of accretion by stars, Monthly Notices of the Royal Astronomical Society, 104, 273–282.CrossRefGoogle Scholar
Born, M. & Wolf, E. (1999). Principles of Optics, 7th edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bosma, A. (1981). 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types, Astronomical Journal, 86, 1825–1846.CrossRefGoogle Scholar
Bothe, W. & Kolhörster, W. (1929). The nature of the high-altitude radiation, Zeitschrift für Physik, 56, 751–777.CrossRefGoogle Scholar
Bouwens, R. J., Illingworth, G. D., Blakeslee, J. P., et al. (2006). Galaxies at z ∼ 6: The UV luminosity function and luminosity density from 506 HUDF, HUDF parallel ACS field, and GOODS i-dropouts, Astrophysical Journal, 653, 53–85.CrossRefGoogle Scholar
Boyle, B. J., Griffiths, R. E., Shanks, T., et al. (1993). A deep ROSAT survey. I – The QSO X-ray luminosity function, Monthly Notices of the Royal Astronomical Society, 260, 49–58.CrossRefGoogle Scholar
Boyle, B. J., Shanks, T., Croom, S. M., et al. (2000). The 2dF QSO Redshift Survey – I. The optical luminosity function of quasi-stellar objects, Monthly Notices of the Royal Astronomical Society, 317, 1014–1022.CrossRefGoogle Scholar
Bracessi, A., Formiggini, L., & Gandolfi, E. (1970). Magnitudes, colours and coordinates of 175 ultraviolet excess objects in the field 13h, +36°, Astronomy and Astrophysics, 5, 264–279. Erratum: Astronomy and Astrophysics, 23, 159.Google Scholar
Bracewell, R. (1986). The Fourier Transform and its Applications. New York: McGraw– Hill.Google Scholar
Brandt, W. N. & Hasinger, G. (2005). Deep extragalactic X-Ray surveys, Annual Review of Astronomy and Astrophysics, 43, 827–859.CrossRefGoogle Scholar
Browne, I. W. A. & Murphy, D. W. (1987). Beaming and the X-ray, optical and radio properties of quasars, Monthly Notices of the Royal Astronomical Society, 226, 601–627.CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. (2003). Stellar population synthesis at the resolution of 2003, Monthly Notices of the Royal Astronomical Society, 344, 1000–1028.CrossRefGoogle Scholar
Burbidge, E. M., Burbidge, G. R., & Sandage, A. R. (1963). Evidence for the occurrence of violent events in the nuclei of galaxies, Reviews of Modern Physics, 35, 947–972.CrossRefGoogle Scholar
Burbidge, G. R. (1956). On synchrotron radiation from Messier 87, Astrophysical Journal, 124, 416–429.CrossRefGoogle Scholar
Burbidge, G. R. (1959). Estimates of the total energy in particles and magnetic field in the non-thermal radio sources, Astrophysical Journal, 129, 849–851.CrossRefGoogle Scholar
Caffee, M. W., Reedy, R. C., Goswami, J. N., et al. (1988). Irradiation records in meteorites, in Meteorites and the Early Solar System, eds Kerridge, J. & Matthews, M., pp. 205–245. Tuscon: University of Arizona Press.Google Scholar
Calabretta, M. R. & Greisen, E. W. (2002). Representations of celestial coordinates in FITS, Astronomy and Astrophysics, 395, 1077–1122.CrossRefGoogle Scholar
Camenzind, M. (2007). Compact Objects in Astrophysics – White Dwarfs, Neutron Stars and Black Holes. Berlin: Springer-Verlag.Google Scholar
Cameron, A. G. W. (1973). Abundances of the elements in the Solar System, Space Science Reviews, 15, 121–146.CrossRefGoogle Scholar
Cappelluti, N., Hasinger, G., Brusa, M., et al. (2007). The XMM-Newton wide-field survey in the COSMOS field II: X-ray data and the log N–log S relations, Astrophysical Journal Supplement, 172, 341–352.CrossRefGoogle Scholar
Carilli, C. L. & Barthel, P. D. (1996). Cygnus A, Astronomy and Astrophysics Reviews, 7, 1–54.CrossRefGoogle Scholar
Carilli, C. L., Perley, R. A., Dreher, J. W., et al. (1991). Multifrequency radio observations of Cygnus A – Spectral aging in powerful radio galaxies, Astrophyiscal Journal, 383, 554–573.CrossRefGoogle Scholar
Carlstrom, J. E., Joy, M. K., Grego, L., et al. (2000). Imaging the Sunyaev–Zel'dovich effect, in Particle Physics and the Universe: Proceedings of Nobel Symposium 198, eds Bergström, L., Carlson, P., & Fransson, C., pp. 148–155. Stockholm: Physica Scripta.Google Scholar
Carron, N. (2007). An Introduction to the Passage of Energetic Particles Through Matter. London: Taylor and Francis.Google Scholar
Carter, B. (1971). Axisymmetric black hole has only two degrees of freedom, Physical Review Letters, 26, 331–333.CrossRefGoogle Scholar
Casandjian, J. & Grenier, I. A. (2008). A revised catalogue of EGRET γ -ray sources, Astronomy and Astrophysics, 489, 849–883.CrossRefGoogle Scholar
Caswell, J. L. (1976). A map of the northern sky at 10 MHz, Monthly Notices of the Royal Astronomical Society, 177, 601–616.CrossRefGoogle Scholar
Cavaliere, A. (1980). Models of X-ray emission from clusters of galaxies, in X-ray Astronomy, eds Giacconi, R. & Setti, G., pp. 217–237. Dordrecht: Reidel.CrossRefGoogle Scholar
Cesarsky, C. J. (1980). Cosmic-ray confinement in the galaxy, Annual Review of Astronomy and Astrophysics, 18, 289–319.CrossRefGoogle Scholar
Hague, J. D. (2009). “Astrophysical sources of cosmic rays and related measurements with the Pierre Auger Observatory”, ArXiv:0906. 2347v2 [astro-ph. HE].Google Scholar
Hampel, W., Handt, J., Heusser, G., et al. (1999). GALLEX solar neutrino observations: Results for GALLEX IV, Physics Letters B, 447, 127–133.CrossRefGoogle Scholar
Häring, N. & Rix, H. (2004). On the black hole mass–bulge mass relation, Astrophysical Journal Letters, 604, L89–L92.CrossRefGoogle Scholar
Harms, R. J., Ford, H. C., Tsvetanov, Z. I., et al. (1994). HST FOS spectroscopy of M87: Evidence for a disk of ionized gas around a massive black hole, Astrophysical Journal Letters, 435, L35–L38.CrossRefGoogle Scholar
Hasinger, G., Burg, R., Giacconi, R., et al. (1993). A deep X-ray survey in the Lockman Hole and the soft X-ray Log N–Log S, Astronomy and Astrophysics, 275, 1–15.Google Scholar
Hasinger, G. & van der Klis, M. (1989). Two patterns of correlated X-ray timing and spectral behaviour in low-mass X-ray binaries, Astronomy and Astrophysics, 225, 79–96.Google Scholar
Hauser, M. G., Arendt, R. G., Kelsall, T., et al. (1998). The COBE diffuse infrared background experiment search for the cosmic infrared background. I. Limits and detections, Astrophysical Journal, 508, 25–43.CrossRefGoogle Scholar
Hauser, M. G. & Dwek, E. (2001). The cosmic infrared background: Measurements and implications, Annual Review of Astronomy and Astrophysics, 39, 249–307.CrossRefGoogle Scholar
Hawking, S. W. (1972). Black holes in general relativity, Communications in Mathematical Physics, 25, 152–166.CrossRefGoogle Scholar
Hawking, S. W. (1975). Particle creation by black holes, in Quantum Gravity; Proceedings of the Oxford Symposium, eds Isham, C. J., Penrose, R., & Sciama, D. W., pp. 219–267. Oxford: Clarendon Press.Google Scholar
Hawking, S. W. & Ellis, G. R. (1973). The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hawkins, M. R. S. (1986). On the nature of objects detected as faint long-term variables, Monthly Notices of the Royal Astronomical Society, 219, 417–426.CrossRefGoogle Scholar
Hayashi, C. (1961). Stellar evolution in early phases of gravitational contraction, Publications of the Astronomical Society of Japan, 13, 450–452.Google Scholar
Hazard, C., Mackey, M. B., & Shimmins, A. J. (1963). Investigation of the radio source 3C 273 by the method of lunar occultations, Nature, 197, 1037–1039.CrossRefGoogle Scholar
Heckman, T. M. (1980). An optical and radio survey of the nuclei of bright galaxies – Activity in normal galactic nuclei, Astronomy and Astrophysics, 87, 152–164.Google Scholar
Heiles, C. (1976). The interstellar magnetic field, Annual Review of Astronomy and Astrophysics, 14, 1–22.CrossRefGoogle Scholar
Heitler, W. (1954). The Quantum Theory of Radiation. Oxford: Oxford University Press.Google Scholar
Hess, V. (1912). Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten, (Concerning observations of penetrating radiation on seven free balloon flights), Physikalische Zeitschrift, 13, 1084–1091.Google Scholar
Hesser, J. E., Harris, W. E., VandenBerg, D. A., et al. (1987). A CCD color–magnitude study of 47 Tucanae, Publications of the Astronomical Society of the Pacific, 99, 739–808.CrossRefGoogle Scholar
Hewish, A. (1986). The pulsar era, Quarterly Journal of the Royal Astronomical Society, 27, 548–558.Google Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., et al. (1968). Observations of a rapidly pulsating radio source, Nature, 217, 709–713.CrossRefGoogle Scholar
Hewitt, J. N., Turner, E. L., Burke, B. F., et al. (1987). A VLA gravitational lens survey, in Observational Cosmology: IAU Symposium No. 124, eds Hewitt, A., Burbidge, G., & Fang, L. Z., pp. 747–750. Dordrecht: Reidel.CrossRefGoogle Scholar
Heyvaerts, J. (1981). Particle acceleration in solar flares, in Solar Flare Magnetohydrodynamics, ed. Priest, E. R., pp. 429–555. London: Gordon and Breach.Google Scholar
Hildebrand, R. H. (1983). The determination of cloud masses and dust characteristics from submillimetre thermal emission, Quarterly Journal of the Royal Astronomical Society, 24, 267–282.Google Scholar
Hillas, A. M. (1984). The origin of ultra-high-energy cosmic rays, Annual Review of Astronomy and Astrophysics, 22, 425–444.CrossRefGoogle Scholar
Hillebrandt, W. & Niemeyer, J. C. (2000). Type IA supernova explosion models, Annual Review of Astronomy and Astrophysics, 38, 191–230.CrossRefGoogle Scholar
Hillenbrand, L. A. (1997). On the stellar population and star-forming history of the Orion Nebula Cluster, Astronomical Journal, 113, 1733–1768.CrossRefGoogle Scholar
Hinton, J. (2009). Ground-based gamma-ray astronomy with Cherenkov telescopes, New Journal of Physics, 11(5), 055005.CrossRefGoogle Scholar
Hirata, K. S., Inoue, K., Kajita, T., et al. (1990). Results from one thousand days of real-time, directional solar-neutrino data, Physical Review Letters, 65, 1297–1300.CrossRefGoogle ScholarPubMed
Hjellming, R. M. & Johnston, K. J. (1981). An analysis of the proper motions of SS 433 radio jets, Astrophyiscal Journal Letters, 246, L141–L145.CrossRefGoogle Scholar
Hjorth, J., Sollerman, J., Møller, P., et al. (2003). A very energetic supernova associated with the γ-ray burst of 29 March 2003, Nature, 423, 847–850.CrossRefGoogle ScholarPubMed
Hoekstra, H., Yee, H. K. C., & Gladders, M. D. (2004). Properties of galaxy dark matter halos from weak lensing, Astrophysical Journal, 606, 67–77.CrossRefGoogle Scholar
Hogg, D. W., Blanton, M. R., Brinchmann, J., et al. (2004). The dependence on environment of the color–magnitude relation of galaxies, Astrophysical Journal, 601, L29–L32.CrossRefGoogle Scholar
Holloway, N. J. & Pryce, M. H. L. (1981). Properties of gaps in pulsar magnetospheres, Monthly Notices of the Royal Astronomical Society, 194, 95–110.CrossRefGoogle Scholar
Homan, D. C., Kadler, M., Kellermann, K. I., et al. (2009). MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VII. Blazar jet acceleration, Astrophysical Journal, 706, 1253–1268.CrossRefGoogle Scholar
Hook, I. M., McMahon, R. G., Boyle, B. J., et al. (1991). The variability of a large sample of quasars, in The Space Distribution of Quasars, ed. Crampton, D., pp. 67–75. San Francisco: Astronomical Society of the Pacific Conference Series, Vol. 21.Google Scholar
Horne, K. & Marsh, T. R. (1986). Indirect imaging of accretion disks in binaries, in The Physics of Accretion onto Compact Objects, eds Mason, K. O., Watson, M. G., & White, N. E., pp. 1–13. Berlin: Springer Verlag.Google Scholar
Hosaka, J., Ishihara, K., Kameda, J., et al. (2006). Solar neutrino measurements in Super-Kamiokande-I, Physical Review D, 73, 112001.CrossRefGoogle Scholar
Hoyle, F. & Fowler, W. A. (1963). On the nature of strong radio sources, Monthly Notices of the Royal Astronomical Society, 125, 169–176. Also, Nature of strong radio sources, (1963), Nature, 197, 533–535.CrossRefGoogle Scholar
Hoyle, F. & Lyttleton, R. A. (1939). The effect of interstellar matter on climatic variation, Proceedings of the Cambridge Philosophical Society, 35, 405–415.CrossRefGoogle Scholar
Huarte-Espinosa, M., Krause, M. & Alexander, P. (2010). Interaction of Fanaroff–Riley II radio jets with turbulent intracluster magnetic fields, Monthly Notices of the Royal Astronomical Society (in press).Google Scholar
Hubble, E. P. (1929). A relation between distance and radial velocity among extra-galactic nebulae, Proceedings of the National Academy of Sciences, 15, 168–173.CrossRefGoogle ScholarPubMed
Hubble, E. P. (1936). The Realm of the Nebulae. New Haven: Yale University Press.Google Scholar
Huchra, J., Jarrett, T., Skrutskie, M., et al. (2005). The 2MASS Redshift Survey and low galactic latitude large-scale structure, in Nearby Large-Scale Structures and the Zone of Avoidance, ed. Fairall, K. P. & Woudt, P. A., pp. 135–146. San Francisco: Astronomical Society of the Pacific Conference Series, Vol. 329.Google Scholar
Hughes, P. A. (ed.) (1991). Beams and Jets in Astrophysics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hulse, R. A. & Taylor, J. H. (1975). Discovery of a pulsar in a binary system, Astrophysical Journal Letters, 195, L51–L53.CrossRefGoogle Scholar
Illingworth, G. (1977). Rotation (?) in 13 elliptical galaxies, Astrophysical Journal Letters, 218, L43–L47.CrossRefGoogle Scholar
Inskip, K. J., Best, P. N., Longair, M. S., et al. (2002). Infrared magnitude–redshift relations for luminous radio galaxies, Monthly Notices of the Royal Astronomical Society, 329, 277–289.CrossRefGoogle Scholar
Irwin, M., McMahon, R. G., & Hazard, C. (1991). APM optical surveys for high redshift quasars, in The Space Distribution of Quasars, ed. Crampton, D., pp. 117–126, San Francisco: Astronomical Society of the Pacific Conference Series, Vol. 21.Google Scholar
Iyudin, A. F., Diehl, R., Bloemen, H., et al. (1994). COMPTEL observations of Ti-44 gamma-ray line emission from CAS A, Astronomy and Astrophysics, 284, L1–L4.Google Scholar
Jackson, J. D. (1999). Classical Electrodynamics. New York: John Wiley.Google Scholar
Jenkins, E. B. (1987). Observations of absorption lines from highly ionized atoms, in Exploring the Universe with the IUE Satellite, ed. Kondo, Y., volume 129 of Astrophysics and Space Science Library, pp. 531–548, Dordrecht: Reidel.CrossRefGoogle Scholar
Jennison, R. C. & Das Gupta, M. K. (1953). Fine structure of the extra-terrestrial radio source Cygnus 1, Nature, 172, 996–997.CrossRefGoogle Scholar
Jones, T. W. (2008). The role of MHD in the ICM and its interactions with AGN outflows, in Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, eds Rector, T. A. & De Young, D. S. pp. 398–409. San Francisco: Astronomical Society of the Pacific Conference Series, Vol. 386.Google Scholar
Jokipii, J. R. (1973). Turbulence and scintillations in the interplanetary plasma, Annual Review of Astronomy and Astrophysics, 11, 1–28.CrossRefGoogle Scholar
Kaastra, J. S., Tamura, T., Peterson, J. R., et al. (2004). Spatially resolved X-ray spectroscopy of cooling clusters of galaxies, Astronomy and Astrophysics, 413, 415–439.CrossRefGoogle Scholar
Kaiser, C. R. & Alexander, P. (1997). A self-similar model for extragalactic radio sources, Monthly Notices of the Royal Astronomical Society, 286, 215–222.CrossRefGoogle Scholar
Kaler, J. (2001). Planetary nebulae, Encyclopedia of Astronomy and Astrophysics, 3, 2066–2074.Google Scholar
Kang, H. & Jones, T. W. (2006). Numerical studies of diffusive shock acceleration at spherical shocks, Astroparticle Physics, 25, 246–258.CrossRefGoogle Scholar
Kang, H., Ryu, D., & Jones, T. W. (2009). Self-similar evolution of cosmic-ray modified shocks: The cosmic-ray spectrum, Astrophysical Journal, 695, 1273–1288.CrossRefGoogle Scholar
Kapahi, V. K. & Saikia, D. J. (1982). Relativistic beaming in the central components of double radio quasars, Journal of Astrophysics and Astronomy, 3, 465–483.CrossRefGoogle Scholar
Karttunen, H., Kroger, P., Oja, H., et al. (2007). Fundamental Astronomy. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Karzas, W. J. & Latter, R. (1961). Electron radiative transitions in a Coulomb field, Astrophysical Journal Supplement, 6, 167–212.CrossRefGoogle Scholar
Katz, D. M., Kassim, N. E., Lazio, T. J. W., et al. (2000). Spatial variations of the synchrotron spectrum within Tycho's supernova remnant (3C 10): A spectral tomography analysis of radio observations at 20 and 90 centimeter wavelengths, Astrophysical Journal, 529, 453–462.CrossRefGoogle Scholar
Kauffmann, G., Heckman, T. M., White, S. D. M., et al. (2003). The dependence of star formation history and internal structure on stellar mass for 105 low-redshift Galaxies, Monthly Notices of the Royal Astronomical Society, 341, 54–69.CrossRefGoogle Scholar
Kellermann, K. I., Vermeulen, R. C., Zensus, J. A., et al. (1998). Sub-milliarcsecond imaging of quasars and active galactic nuclei, Astronomical Journal, 115, 1295–1318.CrossRefGoogle Scholar
Kembhavi, A., Feigelson, E. D., & Singh, K. P. (1986). X-ray and radio core emission in radio quasars, Monthly Notices of the Royal Astronomical Society, 220, 51–67.CrossRefGoogle Scholar
Kembhavi, A. K. & Narlikar, J. V. (1999). Quasars and Active Galactic Nuclei – An Introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kennicutt, R. (1989). The star formation law in galactic discs, Astrophysical Journal, 344, 685–703.CrossRefGoogle Scholar
Kennicutt, R. (2006). Young spirals get older, Nature, 442, 753–754.CrossRefGoogle ScholarPubMed
Kennicutt, R. C., Edgar, B. K., & Hodge, P. W. (1989). Properties of H II region populations in galaxies. II – The H II region luminosity function, Astrophysical Journal, 337, 761–781.CrossRefGoogle Scholar
Kennicutt, R. C. Jr. (1998). The global Schmidt law in star-forming galaxies, Astrophysical Journal, 498, 541–552.CrossRefGoogle Scholar
Kent, S. M. & Gunn, J. E. (1982). The dynamics of rich clusters of galaxies. I - The Coma Cluster, Astronomical Journal, 87, 945–971.CrossRefGoogle Scholar
Kerr, R. P. (1963). Gravitational field of a spinning mass as an example of algebraically special metrics, Physical Review Letters, 11, 237–238.CrossRefGoogle Scholar
Khachikian, E. Y. & Weedman, D. W. (1971). A spectroscopic study of luminous galactic nuclei, Astrofizika, 7, 389–406.Google Scholar
Khachikian, E. Y. & Weedman, D. W. (1974). An atlas of Seyfert galaxies, Astrophysical Journal, 192, 581–589.CrossRefGoogle Scholar
Kidger, M. R. (1989). The optical variability of 3C 345, Astronomy and Astrophysics, 226, 6–22.Google Scholar
Kiepenheuer, K. O. (1950). Cosmic rays as the source of general galactic radio emission, Physical Review, 79, 738–739.CrossRefGoogle Scholar
King, I. R. (1966). The structure of star clusters. III. Some simple dynamical models, Astronomical Journal, 71, 64–75.CrossRefGoogle Scholar
King, I. R. (1981). The dynamics of globular clusters, Quarterly Journal of the Royal Astronomical Society, 22, 227–243.Google Scholar
Kippenhahn, R. & Weigert, A. (1990). Stellar Structure and Evolution. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Klebesadel, R. W., Strong, I. B., & Olson, R. A. (1973). Observations of gamma-ray bursts of cosmic origin, Astrophysical Journal Letters, 182, L85–L88.CrossRefGoogle Scholar
Klochkov, D., Staubert, R., Postnov, K., et al. (2008). INTEGRAL observations of Hercules X-1, Astronomy and Astrophysics, 482, 907–915.CrossRefGoogle Scholar
Kneib, J. P. (1993). PhD Dissertation. Université Paul Sabatier, Toulouse.Google Scholar
Koch, H. W. & Motz, J. W. (1959). Bremsstrahlung cross-section formulas and related data, Reviews of Modern Physics, 31, 920–955.CrossRefGoogle Scholar
Kolb, E. W. & Turner, M. S. (1990). The Early Universe. Redwood City, California: Addison–Wesley.Google Scholar
Kolhörster, W. (1913). Messungen der Durchdringenden Strahlung im Freiballon in Grösseren Höhen, Physikalische Zeitschrift, 14, 1153–1156.Google Scholar
Kompaneets, A. (1956). The establishment of thermal equilibrium between quanta and electrons, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 31, 876–885. (English translation: 1957, Soviet Physics, 4, 730–737).Google Scholar
Koo, D. C. & Kron, R. (1982). QSO counts – A complete survey of stellar objects to B = 23, Astronomy and Astrophysics, 105, 107–119.Google Scholar
Kormendy, J. & Bender, R. (1999). The double nucleus and central black hole of M31, Astrophysical Journal, 522, 772–792.CrossRefGoogle Scholar
Kormendy, J. & Richstone, D. O. (1995). Inward bound – The search for supermassive black holes in galactic nuclei, Annual Review of Astronomy and Astrophysics, 33, 581–624.CrossRefGoogle Scholar
Kovalev, Y. Y., Aller, H. D., Aller, M. F., et al. (2009). The relation between AGN gammaray emission and parsec-scale radio jets, Astrophysical Journal Letters, 696, L17–L21.CrossRefGoogle Scholar
Kovalev, Y. Y., Kellermann, K. I., Lister, M. L., et al. (2005). Sub-milliarcsecond imaging of quasars and active galactic nuclei. IV. Fine-scale structure, Astronomical Journal, 130, 2473–2505.CrossRefGoogle Scholar
Kowal, G., Lazarian, A., Vishniac, E. T., et al. (2009). Numerical tests of fast reconnection in weakly stochastic magnetic fields, Astrophysical Journal, 700, 63–85.CrossRefGoogle Scholar
Kramer, M., Stairs, I. H., Manchester, R. N., et al. (2006). Tests of general relativity from timing the double pulsar, Science, 314, 97–102.CrossRefGoogle ScholarPubMed
Krause, M. (2005). Very light jets II: Bipolar large scale simulations in King atmospheres, Astronomy and Astrophysics, 431, 45–64.CrossRefGoogle Scholar
Krause, O., Birkmann, S. M., Usuda, T., et al. (2008a). The Cassiopeia A supernova was of Type IIb, Science, 320, 1195–1197.CrossRefGoogle ScholarPubMed
Krause, O., Tanaka, M., Usuda, T., et al. (2008b). Tycho Brahe's 1572 supernova as a standard type Ia as revealed by its light-echo spectrum, Nature, 456, 617–619.CrossRefGoogle ScholarPubMed
Krolik, J. H. (1999). Active Galactic Nuclei – From the Central Black Hole to the Galactic Environment. Princeton, NJ: Princeton University Press.Google Scholar
Krymsky, G. F. (1977). A regular mechanism for the acceleration of charged particles on the front of a shock wave, Doklady Akademiya Nauk SSSR, 234, 1306–1308.Google Scholar
Krzeminski, W. (1974). The identification and UBV photometry of the visible component of the Centaurus X-3 binary system, Astrophysical Journal Letters, 192, L135–L138.CrossRefGoogle Scholar
Ku, W., Helfand, D. J., & Lucy, L. B. (1980). X-ray properties of quasars, Nature, 288, 323–328.CrossRefGoogle Scholar
Kubota, A. & Makishima, K. (2005). Observational studies of stellar black hole binaries and ULXs, ArXiv Astrophysics e-prints, astro-ph/0507271. See also: Advances in Space Research, Special Issue Proceedings of 35th COSPAR Conference, Paris, France, 18–25 July 2004.Google Scholar
Kulsrud, R. & Pearce, W. P. (1969). The effect of wave-particle interactions on the propagation of cosmic rays, Astrophysical Journal, 156, 445–469.CrossRefGoogle Scholar
Kulsrud, R. M. (2005). Plasma Physics for Astrophysics. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Labeyrie, A. (1978). Stellar interferometry methods, Annual Review of Astronomy and Astrophysics, 16, 77–102.CrossRefGoogle Scholar
Lacy, M., Miley, G., Rawlings, S., et al. (1994). 8C 1435+635: A radio galaxy at z = 4.25, Monthly Notices of the Royal Astronomical Society, 271, 504–512.CrossRefGoogle Scholar
Lagache, G., Dole, H., & Puget, J.-L. (2003). Modelling infrared galaxy evolution using a phenomenological approach, Monthly Notices of the Royal Astronomical Society, 338, 555–571.CrossRefGoogle Scholar
Lagache, G., Dole, H., Puget, J.-L., et al. (2004). Polycyclic aromatic hydrocarbon contribution to the infrared output energy of the Universe at z ≃ 2, Astrophysical Journal Supplement, 154, 112–117.CrossRefGoogle Scholar
Lagage, P. O. & Cesarsky, C. J. (1983). The maximum energy of cosmic rays accelerated by supernova shocks, Astronomy and Astrophysics, 125, 249–257.Google Scholar
Laing, R. A. (1988). The sidedness of jets and depolarization in powerful extragalactic radio sources, Nature, 331, 149–151.CrossRefGoogle Scholar
Laing, R. A. (1993). Radio observations of jets: large scales, in Astrophysical Jets, eds Burgarella, D., Livio, M., & O'Dea, C., pp. 95–119. Cambridge: Cambridge University Press.Google Scholar
Laing, R. A. & Bridle, A. H. (2002). Relativistic models and the jet velocity field in the radio galaxy 3C 31, Monthly Notices of the Royal Astronomical Society, 336, 328–352.CrossRefGoogle Scholar
Laing, R. A., Riley, J. M., & Longair, M. S. (1983). Bright radio sources at 178 MHz – Flux densities, optical identifications and the cosmological evolution of powerful radio galaxies, Monthly Notices of the Royal Astronomical Society, 204, 151–187.CrossRefGoogle Scholar
Lal, D. (1972). Hard rock cosmic ray archaeology, Space Science Reviews, 14, 3–102.CrossRefGoogle Scholar
Lamb, H. (1932). Hydrodynamics, 6th edition. Cambridge: Cambridge University Press.Google Scholar
Landau, L. D. & Lifshitz, E. M. (1987). Fluid Mechanics, 2nd edition. Oxford: Butterworth-Heinemann.Google Scholar
Larmor, J. (1884). Electromagnetic induction in conducting sheets and solid bodies, Philosophical Magazine, Series 5, 17, 1–23.CrossRefGoogle Scholar
Lattes, C., Occhialini, G., & Powell, C. (1947). Observations on the tracks of slow mesons in photographic emulsions, Nature, 160, 453–456.CrossRefGoogle ScholarPubMed
Lawson, K. D., Mayer, C. J., Osborne, J. L., et al. (1987). Variations in the spectral index of the Galactic radio continuum emission in the northern hemisphere, Monthly Notices of the Royal Astronomical Society, 225, 307–327.CrossRefGoogle Scholar
Lazarian, A. & Vishniac, E. T. (1999). Reconnection in a weakly stochastic field, Astrophysical Journal, 517, 700–718.CrossRefGoogle Scholar
Lazarian, A., Vishniac, E. T. & Cho, J. (2004). Magnetic field structure and stochastic reconnection in a partially ionized gas, Astrophysical Journal, 603, 180–197.CrossRefGoogle Scholar
Le Borgne, D., Elbaz, D., Ocvirk, P., et al. (2009). Cosmic star-formation history from a non-parametric inversion of infrared galaxy counts, Astronomy and Astrophysics, 504, 727–740.CrossRefGoogle Scholar
Le Roux, E. (1961). Étude théorique du rayonnement synchrotron des radiosources, Annales d'Astrophysique, 24, 71–85.Google Scholar
Leavitt, H. S. (1912). Periods of 25 variable stars in the Small Magellanic Cloud, Harvard College Observatory Circular, No. 173, 1–2.Google Scholar
Lee, J., Koo, B., Raymond, J., et al. (2007). Subaru HDS observations of a Balmerdominated shock in Tycho's supernova remnant, Astrophysical Journal Letters, 659, L133–L136.CrossRefGoogle Scholar
Lee, J.-J., Raymond, J. C., Park, S., et al. (2010). Resolved shock structure of the Balmerdominated filaments in Tycho's supernova remnant: Cosmic-ray precursor?, Astrophysical Journal Letters, 715, L146–L149.CrossRefGoogle Scholar
Leger, A. & Puget, J. L. (1984). Identification of the ‘Unidentified’ IR emission features of interstellar dust?, Astronomy and Astrophysics, 137, L5–L8.Google Scholar
Legg, M. P. C. & Westfold, K. C. (1968). Elliptic polarization of synchrotron radiation, Astrophysical Journal, 154, 499–514.CrossRefGoogle Scholar
Leibundgut, B. (2000). Type Ia supernovae, Astronomy and Astrophysics Reviews, 10, 179–209.CrossRefGoogle Scholar
Leighton, R. (1959). Introduction to Modern Physics. San Francisco: Addison-Wesley.Google Scholar
Lequeux, J., Peimbert, M., Rayo, J. F., et al. (1979). Chemical composition and evolution of irregular and blue compact galaxies, Astronomy and Astrophysics, 80, 155–166.Google Scholar
Lewin, W. H. G. and van der Klis, M. (eds) (2006). Compact Stellar X-ray Sources. Cambridge Astrophysics Series, No. 39. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Liedahl, D. A. (1999). The X-ray spectral properties of photoionized plasma and transient plasmas, in X-Ray Spectroscopy in Astrophysics, eds van Paradijs, J. & Bleeker, J. A. M., volume 520 of Lecture Notes in Physics. Berlin: Springer-Verlag, pp. 189–268.CrossRefGoogle Scholar
Lightman, A. P. & Eardley, D. M. (1974). Black holes in binary systems: Instability of disk accretion, Astrophysical Journal, 187, L1–L3.CrossRefGoogle Scholar
Lilly, S. & Cowie, L. (1987). Deep infrared surveys, in Infrared Astronomy with Arrays, eds Wynn-Williams, C. & Becklin, E., pp. 473–482. Honolulu: Institute for Astronomy, University of Hawaii Publications.Google Scholar
Lilly, S. J. (1988). Discovery of a radio galaxy at a redshift of 3.395, Astrophysical Journal, 333, L161–L167.CrossRefGoogle Scholar
Lilly, S. J., Tresse, L., Hammer, F., et al. (1995). The Canada–France Redshift Survey. VI. Evolution of the galaxy luminosity function to z ∼ 1, Astrophysical Journal, 455, 108–124.CrossRefGoogle Scholar
Lin, R. P., Krucker, S., Hurford, G. J., et al. (2003). RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare, Astrophysical Journal Letters, 595, L69–L76.CrossRefGoogle Scholar
Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. (2006). Catalogue of high-mass X-ray binaries in the Galaxy (4th edition), Astronomy and Astrophysics, 455, 1165–1168.CrossRefGoogle Scholar
Longair, M. S. (1966). On the interpretation of radio source counts, Monthly Notices of the Royal Astronomical Society, 133, 421–436.CrossRefGoogle Scholar
Longair, M. S. (1978). Radio astronomy and cosmology, in Observational Cosmology: 8th Advanced Course, Swiss Society of Astronomy and Astrophysics, Saas-Fee 1978, eds Maeder, A., Martinet, L., & Tammann, G., pp. 125–257. Geneva: Geneva Observatory Publications.Google Scholar
Longair, M. S. (1981). High Energy Astrophysics, 1st edition. Cambridge: Cambridge University Press.Google Scholar
Longair, M. S. (1988). The new astrophysics, in The New Physics, ed. Davies, P., pp. 94–208. Cambridge: Cambridge University Press.Google Scholar
Longair, M. S. (1995). The physics of background radiation, in The Deep Universe, by Sandage, A. R., Kron, R. G. and Longair, M. S., eds Binggeli, B. & Buser, R., pp. 317–514, Saas-Fee Advanced Course 23. Berlin: Springer-Verlag.Google Scholar
Longair, M. S. (1997a). Active galactic nuclei – The redshift one 3CR galaxies, Astronomy and Geophysics, 38, 10–15.CrossRefGoogle Scholar
Longair, M. S. (1997b). High Energy Astrophysics, Volume 1 (revised 2nd edition). Cambridge: Cambridge University Press.Google Scholar
Longair, M. S. (1997c). High Energy Astrophysics, Volume 2 (revised 2nd edition). Cambridge: Cambridge University Press.Google Scholar
Longair, M. S. (2003). Theoretical Concepts in Physics: An Alternative View of Theoretical Reasoning in Physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Longair, M. S. (2006). The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Longair, M. S. (2008). Galaxy Formation, 2nd edition. Berlin: Springer-Verlag.Google Scholar
Longair, M. S. & Riley, J. M. (1979). Statistical evidence on the dynamical evolution of extended radio sources, Monthly Notices of the Royal Astronomical Society, 188, 625–635.CrossRefGoogle Scholar
Longair, M. S., Ryle, M., & Scheuer, P. A. G. (1973). Models of extended radiosources, Monthly Notices of the Royal Astronomical Society, 164, 243–270.CrossRefGoogle Scholar
Lorimer, D. & Kramer, M. (2005). Handbook of Pulsar Astronomy. Cambridge: Cambridge University Press.Google Scholar
Lotz, J. M., Madau, P., Giavalisco, M., et al. (2006). The rest-frame far-ultraviolet morphologies of star-forming galaxies at z ∼ 1.5 and 4, Astrophysical Journal, 636, 592–609.CrossRefGoogle Scholar
Lovelace, R. V. E. & Romanova, M. M. (2003). Relativistic Poynting jets from accretion disks, Astrophysical Journal, 596, L159–L162.CrossRefGoogle Scholar
Lucek, S. G. & Bell, A. R. (2000). Non-linear amplification of a magnetic field driven by cosmic ray streaming, Monthly Notices of the Royal Astronomical Society, 314, 65–74.CrossRefGoogle Scholar
Lund, N. (1984). Cosmic ray abundances, elemental and isotopic, in Cosmic Radiation in Contemporary Astrophysics, ed. Shapiro, M. M., pp. 1–26. Dordrecht: Reidel.Google Scholar
Luo, D., McCray, D., & Slavin, J. (1994). The impact of SN 1987A with its interstellar ring, Astrophysical Journal, 430, 264–276.CrossRefGoogle Scholar
Lyne, A. G., Burgay, M., Kramer, M., et al. (2004). A double-pulsar system: A rare laboratory for relativistic gravity and plasma physics, Science, 303, 1153–1157.CrossRefGoogle ScholarPubMed
Lyne, A. G. & Graham-Smith, F. (2006). Pulsar Astronomy, 3rd edition. Cambridge: Cambridge University Press.Google Scholar
Madau, P., Ferguson, H., Dickinson, M., et al. (1996). High-redshift galaxies in the Hubble Deep Field: Colour selection and star formation history to z ∼ 4, Monthly Notices of the Royal Astronomical Society, 283, 1388–1404.CrossRefGoogle Scholar
Maeder, A. & Meynet, G. (1989). Grid of evolutionary models from 0.85 to 120 solar masses – observational tests and the mass limits, Astronomy and Astrophysics, 210, 155–173.Google Scholar
Magorrian, J., Tremaine, S., Richstone, D., et al. (1998). The demography of massive dark objects in galaxy centers, Astronomical Journal, 115, 2285–2305.CrossRefGoogle Scholar
Mahoney, W. A., Varnell, L. S., Jacobson, A. S., et al. (1988). Gamma-ray observations of Co-56 in SN 1987A, Astrophysical Journal Letters, 334, L81–L85.CrossRefGoogle Scholar
Majewski, S. R., Munn, J. A., Kron, R. G., et al. (1991). A proper motion and variability QSO survey to B = 22.5, in The Space Distribution of Quasars, ed. Crampton, D., pp. 55–65. San Francisco: Astronomical Society of the Pacific Conference Series, Vol. 21.Google Scholar
Malkan, M. & Sargent, W. L. (1982). The ultraviolet excess of Seyfert 1 galaxies and quasars, Astrophysical Journal, 254, 22–37.CrossRefGoogle Scholar
Manchester, R. (2005). CSIRO Research Highlights, 2005. See http://www.atnf.csiro.au/reserch/highlights/2005/manchester/manchester.html Google Scholar
Manchester, R. N., Hobbs, G. B., Teoh, A. et al. (2005). The Australia National Facility Pulsar Catalogue, Astronomical Journal, 129, 1993–2006.CrossRefGoogle Scholar
Manchester, R. N. & Taylor, J. H. (1977). Pulsars. San Francisco: W. H. Freeman.Google Scholar
Margon, B. & Ostriker, J. P. (1973). The luminosity function of Galactic X-ray sources – A cutoff and a ‘standard candle’?, Astrophysical Journal, 186, 91–96.CrossRefGoogle Scholar
Markarian, B. E. (1967). Galaxies with an ultraviolet continuum, Astrofizica, 3, 24–38.Google Scholar
Markarian, B. E., Lipovetsky, V. A., & Stepanian, D. A. (1981). Galaxies with ultraviolet continuum XV, Astrofizica, 17, 619–627. Translation: (1982), Astrophysics, 17, 321–332.Google Scholar
Marscher, A. P. (1993). Compact extragalactic radio jets, in Astrophysical Jets, eds Burgarella, D., Livio, M., & O'Dea, C. P., Astrophysics and Space Science Library, Vol. 103, pp. 73–94. Cambridge: Cambridge University Press.Google Scholar
Marscher, A. P., Jorstad, S. G., Gómez, J., et al. (2002). Observational evidence for the accretion-disk origin for a radio jet in an active galaxy, Nature, 417, 625–627.CrossRefGoogle Scholar
Marsh, T. R., Horne, K., Schlegel, E. M., et al. (1990). Doppler imaging of the dwarf nova U Geminorum, Astrophysical Journal, 364, 637–646.CrossRefGoogle Scholar
Matt, G., Fabian, A. C., & Reynolds, C. S. (1997). Geometrical and chemical dependence of K-shell X-ray features, Monthly Notices of the Royal Astronomical Society, 289, 175–184.CrossRefGoogle Scholar
Matthews, T. A. Morgan, W. W., & Schmidt, M. (1964). A discussion of galaxies identified with radio sources, Astrophysical Journal, 140, 35–49.CrossRefGoogle Scholar
Matthews, T. A. & Sandage, A. R. (1963). Optical identification of 3C 48, 3C 196 and 3C 286 with stellar objects, Astrophysical Journal, 138, 30–56.CrossRefGoogle Scholar
Matthewson, D. S. & Ford, V. L. (1970). Polarization observations of 1800 stars, Memoirs of the Royal Astronomical Society, 74, 139–182.Google Scholar
Matthiae, G. (2010). Observations of ultra high energy cosmic rays, Journal of Physics Conference Series, 203, 012016, pp. 1–6.CrossRefGoogle Scholar
Matz, S. M., Share, G. H., Leising, M. D., et al. (1988). Gamma-ray line emission from SN 1987A, Nature, 331, 416–418.CrossRefGoogle Scholar
Mayor, M. & Queloz, D. (1995). A Jupiter-mass companion to a solar-type star, Nature, 378, 355–359.CrossRefGoogle Scholar
McCarthy, P. J. (2006). Galaxy formation and cosmology in the ELT era, in Scientific Requirements for Extremely Large Telescopes: IAU Symposium No. 232, eds Whitelock, P., Dennefeld, M., & Leibundgut, B., pp. 119–129. Cambridge: Cambridge University Press.Google Scholar
McCarthy, P. J., Le Borgne, D., Crampton, D., et al. (2004). Evolved galaxies at z ≥ 1.5 from the Gemini Deep Deep Survey: The formation epoch of massive stellar systems, Astrophysical Journal Letters, 614, L9–L12.CrossRefGoogle Scholar
McCarthy, P. J., van Breugel, W. J. M., Spinrad, H., et al. (1987). A correlation between the radio and optical morphologies of distant 3CR radio galaxies, Astrophysical Journal, 321, L29–L33.CrossRefGoogle Scholar
McClintock, J. E. and Remillard, R. A. (2006). Black hole binaries, in Compact Stellar X-ray Sources, eds Lewin, W. H. G. & van der Klis, M., pp. 157–213. Cambridge Astrophysics Series, No. 39. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
McLeod, J. M. & Andrew, B. H. (1968). The radio source VRO 42.22.01, Astrophysical Letters, 1, 243.Google Scholar
McLure, R. J., Jarvis, M. J., Targett, T. A., et al. (2006). On the evolution of the black hole: spheroidmass ratio, Monthly Notices of the Royal Astronomical Society, 368, 1395–1403.CrossRefGoogle Scholar
Melia, F. & Falcke, H. (2001). The supermassive black hole at the Galactic Center, Annual Review of Astronomy and Astrophysics, 39, 309–352.CrossRefGoogle Scholar
Mellinger, A. (2007). Web-address: http://home.arcor-online.de/axel.mellinger/ Google Scholar
Menjo, H., Miyahara, H., Kuwana, K., et al. (2005). Possibility of the detection of past supernova explosions by radiocarbon measurement, in International Cosmic Ray Conference, Pune 2005, volume 2, eds Sripathi Acharya, B., Gupta, S., Jagadeesan, P., Jain, A., Karthikeyan, S., Morris, S., & Tonwar, S., pp. 357–360. Mumbai: Tata Institute of Fundamental Research.Google Scholar
Merritt, D. (1987). The distribution of dark matter in the Coma Cluster, Astrophysical Journal, 313, 121–135.CrossRefGoogle Scholar
Mestel, L. (1999). Stellar Magnetism. Oxford: Clarendon Press.Google Scholar
Mészáros, P. (2002). Theories of gamma-ray bursts, Annual Review of Astronomy and Astrophysics, 40, 137–169.CrossRefGoogle Scholar
Mészáros, P. & Rees, M. J. (1993). Gamma-ray bursts: Multiwaveband spectral predictions for blast wave models, Astrophysical Journal, 418, L59–L62.CrossRefGoogle Scholar
Metcalfe, N., Shanks, T., Campos, A., et al. (1996). Galaxy formation at high redshifts, Nature, 383, 236–237.CrossRefGoogle Scholar
Mewaldt, A. R. & Webber, R. W. (1990). Cosmic ray source abundances derived from high energy measurements of Fe-group nuclei, in International Cosmic Ray Conference, Vol. 3, ed. Protheroe, R. J., pp. 432–435. Adelaide: University of Adelaide.Google Scholar
Meyer, P. (1979). Cosmic rays, in Proceedings of the 16th International Conference on Cosmic Rays, volume 2 of International Cosmic Ray Conference.Google Scholar
Michell, J. (1784). On the means of discovering the distance, magnitude, etc. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations, as would be farther necessary for that purpose, Philosophical Transactions of the Royal Society, 74, 35–57.Google Scholar
Michelson, P. (1994). High energy gamma ray emission from active galaxies: EGRET observations and implications, in The Physics of Active Galaxies, eds Bicknell, G. V., Dopita, M. A., & Quinn, P. J., pp. 13–21. San Francisco: Astronomical Society of the Pacific Conference Series, Vol. 54.Google Scholar
Mihos, J. C. & Hernquist, L. (1994). Triggering of starbursts in galaxies by minor mergers, Astrophysical Journal, 425, L13–L16.CrossRefGoogle Scholar
Mihos, J. C. & Hernquist, L. (1996). Gasdynamics and starbursts in major mergers, Astrophysical Journal, 464, 641–663.CrossRefGoogle Scholar
Mikheyev, S. P. & Smirnov, A. Y. (1985). Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, Soviet Journal of Nuclear Physics, 42, 913–917.Google Scholar
Miller, G. E. & Scalo, J. M. (1979). The initial mass function and stellar birthrate in the solar neighborhood, Astrophysical Journal Supplement Series, 41, 513–547.CrossRefGoogle Scholar
Miller, J. M., Fabian, A. C., Wijnands, R., et al. (2002). Evidence of spin and energy extraction in a galactic black hole candidate: The XMM-Newton/EPIC-pn spectrum of XTE J1650–500, Astrophysical Journal Letters, 570, L69–L73.CrossRefGoogle Scholar
Miller, J. S. (1994). The unification of active galaxies: Seyferts and beyond, in The Physics of Active Galaxies, eds Bicknell, G. V., Dopita, M. A., & Quinn, P. J., pp. 149–157. San Francisco: Astronomical Society of the Pacific Conference Series, Vol. 54.Google Scholar
Minkowski, R. (1960). A new distant cluster of galaxies, Astrophysical Journal, 132, 908–908.CrossRefGoogle Scholar
Mioduszewski, A. J., Rupen, M. P., Walker, R. C., et al. (2004). A summer of SS433: Forty days of VLBA imaging, Bulletin of the American Astronomical Society, 36, 967.Google Scholar
Mirabel, I. F. & Rodrigues, L. F. (1994). A superluminal source in the galaxy, Nature, 371, 46–48.CrossRefGoogle Scholar
Mirabel, I. F. & Rodrigues, L. F. (1998). Microquasars in our galaxy, Nature, 392, 673–676.CrossRefGoogle Scholar
Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. San Francisco: W. H. Freeman.Google Scholar
Mitchell, R. J., Culhane, J. L., Davison, P. J. N., et al. (1976). Ariel 5 observations of the X-ray spectrum of the Perseus Cluster, Monthly Notices of the Royal Astronomical Society, 175, 29P–34P.CrossRefGoogle Scholar
Miyoshi, M., Moran, J., Herrnstein, J., et al. (1995). Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258, Nature, 373, 127–129.CrossRefGoogle Scholar
Moore, C. E. & Merrill, P. W. (1968). Partial Grotrian Diagrams of Astrophysical Interest. Washington: US Department of Commerce, National Bureau of Standards.CrossRefGoogle Scholar
Morgan, W. W. (1958). A preliminary classification of the forms of galaxies according to their stellar population, Publications of the Astronomical Society of the Pacific, 70, 364–391.CrossRefGoogle Scholar
Mukai, K., Wood, J. H., Naylor, T., et al. (1997). The X-ray eclipse of the dwarf nova HT Cassiopeiae: Results from ASCA and ROSAT HRI observations, Astrophysical Journal, 475, 812–822.CrossRefGoogle Scholar
Murray, C. A. (1983). Vectorial Astrometry. Bristol: Adam Hilger.Google Scholar
Mushotzky, R. (1980). The X-ray spectra of clusters of galaxies, in X-ray Astronomy, eds Giacconi, R. & Setti, G., pp. 171–179. Dordrecht: Reidel.CrossRefGoogle Scholar
Nagano, M. & Watson, A. A. (2000). Observations and implications of the ultrahigh-energy cosmic rays, Reviews of Modern Physics, 72, 689–732.CrossRefGoogle Scholar
Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., et al. (1995). Discovery of a cool brown dwarf, Nature, 378, 463–465.CrossRefGoogle Scholar
Narayan, R. (1991). Instabilities in thick disks, in Structure and Emission Properties of Accretion Disks, Proceedings of IAU Colloquium 129, the 6th Institute d' Astrophysique de Paris (IAP) Meeting, eds Bertout, C., Collin-Souffrin, S., & Lasota, J. P., pp. 153–160. Gif-sur-Yvette: Editions Frontiéres.Google Scholar
Narayan, R. & Goodman, J. (1989). Non-axisymmetric shear instabilities in thick accretion disks, in Thoery of Accretion Disks, ed. F., Meyer pp. 231–247. Proceedings of a NATO Advanced Research Workshop, volume 290. Dordrecht: Kluwer.CrossRefGoogle Scholar
Narayan, R., Igumenshev, I. V., & Abramowicz, M. A. (2000). Self-similar accretion flows with accretionk, Astrophysical Journal, 539, 798–808.CrossRefGoogle Scholar
Narayan, R. & Yi, I. (1994). Advection-dominated accretion: a self-similar solution, Astrophysical Journal Letters, 428, L13–L16.CrossRefGoogle Scholar
Newman, E. T., Couch, K., Chinnapared, K., et al. (1965). Metric of a rotating charged mass, Journal of Mathematical Physics, 6, 918–919.CrossRefGoogle Scholar
Nicolet, B. (1980). A plot of UBV diagram, Astronomy and Astrophysics Supplement, 42, 283–284.Google Scholar
Northrop, T. G. (1963). The Adiabtic Motion of Charged Particles. New York: Interscience.Google Scholar
Novikov, I. D. & Thorne, K. S. (1973). Astrophysics of black holes, in Black Holes, eds DeWitt, C. & DeWitt, B. S., pp. 343–450. New York: Gordon and Breach.Google Scholar
Oemler, A. J. (1974). The systematic properties of clusters of galaxies. Photometry of 15 clusters, Astrophysical Journal, 194, 1–20.CrossRefGoogle Scholar
Ohira, Y., Terasawa, T., & Takahara, F. (2009). Plasma instabilities as a result of charge exchange in the downstream region of supernova remnant shocks, Astrophysical Journal Letters, 703, L59–L62.CrossRefGoogle Scholar
Oliver, S. J., Rowan-Robinson, M., & Saunders, W. (1992). Infrared background constraints on the evolution of IRAS galaxies, Monthly Notices of the Royal Astronomical Society, 256, 15P–22P.CrossRefGoogle Scholar
Oort, J. H. & Walraven, T. (1956). Polarization and composition of the Crab Nebula, Bulletin of the Astronomical Institutes of the Netherlands, 12, 285–311.Google Scholar
Orosz, J. A. (2007). Home-page of Jerome A. Orosz. http://mintaka.sdsu.edu/faculty/orosz/web/ Google Scholar
Orosz, J. A., McClintock, J. E., Narayan, R., et al. (2007). A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M33, Nature, 449, 872–875.CrossRefGoogle Scholar
Orr, M. J. L. & Browne, I. W. A. (1982). Relativistic beaming and quasar statistics, Monthly Notices of the Royal Astronomical Society, 200, 1067–1080.CrossRefGoogle Scholar
Osmer, P. S. (1982). Evidence for a decrease in the space density of quasars at z more than about 3.5, Astrophysical Journal, 253, 28–37.CrossRefGoogle Scholar
Osterbrock, D. E. (1978). Optical emission-line spectra of Seyfert galaxies and radio galaxies, Physica Scripta, 17, 137–143.CrossRefGoogle Scholar
Osterbrock, D. E. & Ferland, G. J. (2005). Astrophysics of Gaseous Nebulae and Active Galactic Nuclei. Mill Valley, California: University Science Books.Google Scholar
Ostriker, J. P. & Peebles, P. J. E. (1973). A numerical study of the stability of flattened galaxies: or, can cold galaxies survive?, Astrophysical Journal, 186, 467–480.CrossRefGoogle Scholar
Owen, F. N. & Ledlow, M. J. (1994). The FR I/II break and the bivariate luminosity function in Abell Clusters of galaxies, in First Stromlo Symposium: Physics of Active Galactic Nuclei, eds Bicknell, G. V., Dopita, M. A., & Quinn, P. J., pp. 319–323. San Francisco: Astronomical Society of the Pacific Conference Series, Vol. 34.Google Scholar
Owen, F. N., Ledlow, M. J., Morrison, G. E., et al. (1997). The cluster of galaxies surrounding Cygnus A, Astrophysical Journal Letters, 488, L15–L17.CrossRefGoogle Scholar
Pachoczyk, A. G. (1970). Radio Astrophysics. San Francisco: W. H. Freeman.Google Scholar
Pacini, F. (1967). Energy emission from a neutron star, Nature, 216, 567–568.CrossRefGoogle Scholar
Pacini, F. (1968). Rotating neutron stars, pulsars and supernova remnants, Nature, 219, 145–146.CrossRefGoogle Scholar
Page, L. (1997). Review of observations of the cosmic microwave background, in Critical Dialogues in Cosmology, ed. Turok, N., pp. 343–362. Singapore: World Scientific.Google Scholar
Pagel, B. (1997). Nucleosynthesis and Chemical Evolution of Galaxies. Cambridge: Cambridge University Press.Google Scholar
Panagia, N., Gilmozzi, R., Macchetto, F., et al. (1991). Properties of the SN 1987A circumstellar ring and the distance to the Large Magellanic Cloud, Astrophysical Journal, 380, L23–L26.CrossRefGoogle Scholar
Papaloizou, J. C. B. & Pringle, J. E. (1984). The dynamical stability of differentially rotating discs with constant specific angular momentum, Monthly Notices of the Royal Astronomical Society, 208, 721–750.Google Scholar
Parker, E. N. (1957). Sweet's mechanism for merging magnetic fields in conducting fluids, Journal of Geophysical Research, 62, 509–520.CrossRefGoogle Scholar
Parker, E. N. (1965). Cosmic rays and their formation of a Galactic halo, Astrophysical Journal, 142, 584–590.CrossRefGoogle Scholar
Parker, E. N. (1979). Cosmical Magnetic Fields. Oxford: Clarendon Press.Google Scholar
Pearson, T. J., Unwin, S. C., Cohen, M. H., et al. (1981). Superluminal expansion of quasar 3C 273, Nature, 290, 365–368.CrossRefGoogle Scholar
Pearson, T. J., Unwin, S. C., Cohen, M. H., et al. (1982). Superluminal expansion of 3C 273, in Extragalactic Radio Sources, eds Heeschen, D. S. & Wade, C. M., pp. 355–356. Dordrecht: Reidel.Google Scholar
Pengelly, R. M. (1964). Recombination spectra, I, Monthly Notices of the Royal Astronomical Society, 127, 145–163.CrossRefGoogle Scholar
Penrose, R. (1969). Gravitational collapse: The role of general relativity, Rivista Nuovo Cimento, 1, 252–276.Google Scholar
Penzias, A. A. & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 MHz, Astrophysical Journal, 142, 419–421.CrossRefGoogle Scholar
Perley, R. A., Dreher, J. W., & Cowan, J. J. (1984). The jet and filaments in Cygnus A, Astrophysical Journal, 285, L35–L38.CrossRefGoogle Scholar
Perlmutter, S., Gabi, S., Goldhaber, G., et al. (1997). Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z > 0.35, Astrophysical Journal, 483, 565–581.CrossRefGoogle Scholar
Perlmutter, S. (2003). Supernovae, dark energy, and the accelerating universe, Physics Today, 56, 53–62.CrossRefGoogle Scholar
Peterson, B. M. (1997). An Introduction to Active Galactic Nuclei. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Peterson, B. M., Balonek, T. J., & 63 authors (1991). Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. II – An intensive study of NGC 5548 at optical wavelengths, Astrophysical Journal, 368, 119–137.CrossRefGoogle Scholar
Petschek, H. E. (1964). Magnetic field annihilation, in The Physics of Solar Flares, Proceedings of AAS-NASA Symposium, ed. Hess, W. N., pp. 425–439. NASA SP-50.Google Scholar
Phillips, M. M. (1993). The absolute magnitudes of Type IA supernovae, Astrophysical Journal, 413, L105–L108.CrossRefGoogle Scholar
,Pierre Auger Collaboration (2007). Correlation of the highest-energy cosmic rays with nearby extragalactic objects, Science, 318, 938–943.CrossRefGoogle Scholar
Plüschke, S., Diehl, R., Schönfelder, V., et al. (2001). The COMPTEL 1.809 MeV survey, in Exploring the Gamma-Ray Universe, eds Gimenez, A., Reglero, V., & Winkler, C., pp. 55–58. ESA Special Publication, Vol. 459.Google Scholar
Powell, C. F., Fowler, P., & Perkins, D. (1959). The Study of Elementary Particles by the Photographic Method. Oxford: Pergamon Press.Google Scholar
Pozdnyakov, L. A., Sobol, I. M., & Sunyaev, R. A. (1983). Comptonization and the shaping of X-ray source spectra – Monte Carlo calculations, Soviet Scientific Reviews, Section E: Astrophysics and Space Physics Reviews, 2, 189–31.Google Scholar
Pratt, G. W. & Arnaud, M. (2002). The mass profile of A 1413 observed with XMM-Newton: Implications for the M–T relation, Astronomy and Astrophysics, 394, 375–393.CrossRefGoogle Scholar
Price, P. & Fleischer, R. (1971). Identification of energetic heavy nuclei with solid dielectric track detectors: Applications to astrophysical and planetary studies, Annual Review of Nuclear Science, 21, 295–334.CrossRefGoogle Scholar
Priest, E. & Forbes, T. (2000). Magnetic Reconnection. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Priest, E. R. (1982). Solar Magneto-Hydrodynamics. Dordrecht: Reidel, Geophysics and Astrophysics Monographs, Volume 21.CrossRefGoogle Scholar
Priest, E. R. & Forbes, T. G. (1986). New models for fast steady state magnetic reconnection, Journal of Geophysical Research, 91, 5579–5588.CrossRefGoogle Scholar
Pringle, J. E. (1981). Accretion discs in astrophysics, Annual Review of Astronomy and Astrophysics, 19, 137–162.CrossRefGoogle Scholar
Pringle, J. E. & King, A. R. (2007). Astrophysical Flows. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Puget, J.-L., Abergel, A., Bernard, J.-P., et al. (1996). Tentative detection of a cosmic far-infrared background with COBE, Astronomy and Astrophysics, 308, L5–L8.Google Scholar
Pye, J. P., McGale, P. A., Allan, D. J., et al. (1995). The ROSAT Wide Field Camera all-sky survey of extreme-ultraviolet sources – II. The 2RE Source Catalogue, Monthly Notices of the Royal Astronomical Society, 274, 1165–1193.Google Scholar
Quest, K. B. & Shapiro, V. D. (1996). Evolution of the fire-hose instability: Linear theory and wave-wave coupling, Journal of Geophysical Research, 101, 24457–24470.CrossRefGoogle Scholar
Ramana Murthy, P. V. & Wolfendale, A. W. (1993). Gamma-Ray Astronomy, 2nd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ramaty, R. & Lingenfelter, R. E. (1979). Gamma-ray line astronomy, Nature, 278, 127–132.CrossRefGoogle Scholar
Ratcliffe, J. A. (1972). An Introduction to the Ionosphere and Magnetosphere. Cambridge: Cambridge University Press.Google Scholar
Reedy, R., Arnold, J., & Lal, D. (1983). Cosmic-ray record in Solar System matter, Annual Review of Nuclear Science, 33, 505–537.CrossRefGoogle Scholar
Rees, M. J. (1967). Studies in radio source structure – I. A relativistically expanding model for variable quasi-stellar radio sources, Monthly Notices of the Royal Astronomical Society, 135, 345–360.CrossRefGoogle Scholar
Rees, M. J. (1984). Black hole models for active galactic nuclei, Annual Review of Astronomy and Astrophysics, 22, 471–506.CrossRefGoogle Scholar
Reimer, P. J., Baillie, M. G. L., Bard, E., et al. (2004). IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP, Radiocarbon, 46, 1029–1058.Google Scholar
Remillard, R. A. & McClintock, J. E. (2006). X-ray properties of black-hole binaries, Annual Review of Astronomy and Astrophysics, 44, 49–92.CrossRefGoogle Scholar
Rest, A., Welch, D. L., Suntzeff, N. B., et al. (2008). Scattered-light echoes from the historical galactic supernovae Cassiopeia A and Tycho (SN 1572), Astrophysical Journal Letters, 681, L81–L84.CrossRefGoogle Scholar
Reynolds, R. J. (1990). The low density ionized component of the interstellar medium and free–free absorption at high galactic latitudes, in Low Frequency Astrophysics from Space, eds Kassim, N. E. & Weiler, K. W., volume 362 of Lecture Notes in Physics, pp. 121–129. Berlin: Springer Verlag.Google Scholar
Richards, G. T., Strauss, M. A., Fan, X., et al. (2006). The Sloan Digital Sky Survey Quasar Survey: Quasar luminosity function from data release 3, Astronomical Journal, 131, 2766–2787.CrossRefGoogle Scholar
Rindler, W. (2001). Relativity: Special, General and Cosmological. Oxford: Oxford University Press.Google Scholar
Roberts, M. S. & Haynes, M. P. (1994). Physical parameters along the Hubble sequence, Annual Review of Astronomy and Astrophysics, 26, 115–152.CrossRefGoogle Scholar
Robinson, I., Schild, A. and Schucking, E. L. (eds) (1965). Quasi-Stellar Sources and Gravitational Collapse. Chicago: University of Chicago Press.Google Scholar
Robson, I. E. (1999). Active Galactic Nuclei. Chichester: John Wiley, in association with Praxis Pubishing.Google Scholar
Rochester, G. & Bulter, C. (1947). Evidence for the existence of new unstable elementary particles, Nature, 160, 855–857.CrossRefGoogle ScholarPubMed
Rossi, B. & Greisen, K. (1941). Cosmic-ray theory, Reviews of Modern Physics, 13, 240–309.CrossRefGoogle Scholar
Rowan-Robinson, M. (1968). The determination of the evolutionary properties of quasars by means of the luminosity–volume test, Monthly Notices of the Royal Astronomical Society, 141, 445–458.CrossRefGoogle Scholar
Rowan-Robinson, M. (1985). The Cosmological Distance Ladder. New York: W. H. Freeman.Google Scholar
Rowan-Robinson, M. (1988). The extragalactic distance scale, Space Science Reviews, 48, 1–71.CrossRefGoogle Scholar
Ruderman, M. A. & Sutherland, P. G. (1975). Theory of pulsars – Polar caps, sparks, and coherent microwave radiation, Astrophysical Journal, 196, 51–72.CrossRefGoogle Scholar
Rybicki, G. B. & Lightman, A. P. (1979). Radiative Processes in Astrophysics. New York: John Wiley.Google Scholar
Sahu, K. C., Livio, M., Petro, L., et al. (1997). The optical counterpart to gamma-ray burst GRB 970228 observed using the Hubble Space Telescope, Nature, 387, 476–478.CrossRefGoogle Scholar
Sajina, A., Scott, D., Dennefeld, M., et al. (2006). The 1–1000 μm spectral energy distributions of far-infrared galaxies, Monthly Notices of the Royal Astronomical Society, 369, 939–957.CrossRefGoogle Scholar
Salpeter, E. E. (1955). The luminosity function and stellar evolution, Astrophysical Journal, 121, 161–167.CrossRefGoogle Scholar
Salpeter, E. E. (1964). Accretion of interstellar matter by massive objects, Astrophysical Journal, 140, 796–800.CrossRefGoogle Scholar
Sandage, A. (1957). Observational approach to evolution. II. A computed luminosity function for K0-K2 stars from M_{v} =+5 to M_{v} =−4.5, Astrophysical Journal, 125, 435–444.CrossRefGoogle Scholar
Sandage, A. R. (1965). The existence of a major new constituent of the Universe: The quasistellar galaxies, Astrophysical Journal, 141, 1560–1578.CrossRefGoogle Scholar
Sanders, D. B. & Mirabel, I. F. (1996). Luminous infrared galaxies, Annual Review of Astronomy and Astrophysics, 34, 749–792.CrossRefGoogle Scholar
Sanders, D. B., Soifer, B. T., Elias, J. H., et al. (1988). Ultraluminous infrared galaxies and the origin of quasars, Astrophysical Journal, 325, 74–91.CrossRefGoogle Scholar
Sargent, W. L. W. (1970). A spectroscopic survey of compact and peculiar galaxies, Astrophysical Journal, 160, 405–427.CrossRefGoogle Scholar
Sargent, W. L. W., Young, P. J., Lynds, C. R., et al. (1978). Dynamical evidence for a central mass concentration in the galaxy M87, Astrophysical Journal, 221, 731–744.CrossRefGoogle Scholar
Saunders, W., Rowan-Robinson, M., Lawrence, A., et al. (1990). The 60-micron and far-infrared luminosity functions of IRAS galaxies, Monthly Notices of the Royal Astronomical Society, 242, 318–337.CrossRefGoogle Scholar
Savage, B. D. & de Boer, K. S. (1979). Observational evidence for a hot gaseous Galactic corona, Astrophysical Journal Letters, 230, L77–L82.CrossRefGoogle Scholar
Scheuer, P. A. G. (1966). Radiation processes in radio astronomy, in Plasma Astrophysics: Proceedings of the International School of Physics ‘Enrico Fermi’, ed. Sturrock, P. A., volume 39, pp. 289–306. New York: Academic Press.Google Scholar
Scheuer, P. A. G. (1974). Models of extragalactic radio sources with a continuous energy supply from a central object, Monthly Notices of the Royal Astronomical Society, 166, 513–528.CrossRefGoogle Scholar
Scheuer, P. A. G. (1982). Morphology and power of radio sources, in Extragalactic Radio Sources, ed. Heeschen, D. S. and Wade, C. M., volume 97 of IAU Symposium, pp. 163–165, Dordrecht: Reidel.Google Scholar
Scheuer, P. A. G. & Readhead, A. C. S. (1979). Superluminally expanding radio sources and the radio-quiet QSOs, Nature, 277, 182–185.CrossRefGoogle Scholar
Schmidt, B. P., Kirshner, R. P., & Eastman, R. G. (1992). Expanding photospheres of Type II supernovae and the extragalactic distance scale, Astrophysical Journal, 395, 366–386.CrossRefGoogle Scholar
Schmidt, M. (1959). The rate of star formation, Astrophysical Journal, 129, 243–258.CrossRefGoogle Scholar
Schmidt, M. (1963). 3C 273: A star-like object with large red-shift, Nature, 197, 1040–1040.CrossRefGoogle Scholar
Schmidt, M. (1965). Large redshifts of five quasi-stellar sources, Astrophysical Journal, 141, 1295–1300.CrossRefGoogle Scholar
Schmidt, M. (1968). Space distribution and luminosity functions of quasi-stellar sources, Astrophysical Journal, 151, 393–409.CrossRefGoogle Scholar
Schmidt, M. & Green, R. F. (1983). Quasar evolution derived from the Palomar Bright Quasar Survey and other complete quasar surveys, Astrophysical Journal, 269, 352–374.CrossRefGoogle Scholar
Schmidt, M., Schneider, D. P., & Gunn, J. E. (1995). Spectroscopic CCD surveys for quasars at large redshift. IV. Evolution of the luminosity function from quasars detected by their Lyman-alpha emission, Astronomical Journal, 110, 68–77.CrossRefGoogle Scholar
Schneider, D., Schmidt, M., & Gunn, J. E. (1991). PC 1247+3406 – An optically selected quasar with a redshift of 4.897, Astronomical Journal, 102, 837–840.CrossRefGoogle Scholar
Schneider, P. (2006). Extragalactic Astronomy and Cosmology. Berlin: Springer–Verlag.Google Scholar
Schneider, P., Kochanek, C. S., & Wambsganss, J. (2006). Gravitational Lensing: Strong, Weak and Micro. Saas-Fee Advanced Course 33: eds Meylan, G., Jetzer, P., & North, P. Berlin: Springer–Verlag.CrossRefGoogle Scholar
Schödel, R., Ott, T., Genzel, R., et al. (2002). A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way, Nature, 419, 694–696.CrossRefGoogle Scholar
Schönberg, M. & Chandrasekhar, S. (1942). On the evolution of the main-sequence stars, Astrophysical Journal, 96, 161–171.CrossRefGoogle Scholar
Schreier, E., Levinson, R., Gursky, H., et al. (1972). Evidence for the binary nature of Centaurus X-3 from UHURU X-Ray Observations, Astrophysical Journal, 172, L79–L89.CrossRefGoogle Scholar
Schroeder, D. (2000). Astronomical Optics, 2nd edition. San Diego: Academic Press.Google Scholar
Schwarzschild, K. (1916). Über das Gravitationsfeld einis Massenpunktes nach der Einsteinschen Theorie (On the gravitational field of a point mass according to Einsteinian theory), Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 1, 189–196.Google Scholar
Schwarzschild, M. (1979). A numerical model for a triaxial stellar system in dynamical equilibrium, Astrophysical Journal, 232, 236–228.CrossRefGoogle Scholar
Sedov, L. I. (1959). Similarity and Dimensional Methods in Mechanics. New York: Academic Press.Google Scholar
Sekido, Y. & Elliot, H. (1985). Early History of Cosmic Ray Studies. Dordrecht: Reidel.CrossRefGoogle Scholar
Sellgren, K. (1984). The near-infrared continuum emission of visual reflection nebulae, Astrophysical Journal, 277, 623–633.CrossRefGoogle Scholar
Serkowski, K. (1973). Interstellar polarization, in Interstellar Dust and Related Topics, IAU Symposium No. 52, eds Greenberg, J. M. & van der Hulst, H. C., pp. 145–152. Dordrecht: Reidel.CrossRefGoogle Scholar
Serkowski, K., Mathewson, D. S., & Ford, V. L. (1975). Wavelength dependence of interstellar polarization and ratio of total to selective extinction, Astrophysical Journal, 196, 261–290.CrossRefGoogle Scholar
Sérsic, J. L. (1968). Atlas de Galaxias Australes. Cordoba, Argentina: Observatorio Astronomico.Google Scholar
Seward, F. D. & Charles, P. A. (2010). Exploring the X-Ray Universe, 2nd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shakura, N. & Sunyaev, R. A. (1973). Black holes in binary systems. Observational appearance, Astronomy and Astrophysics, 24, 337–355.Google Scholar
Shapiro, M. M. (1991). A brief introduction to the cosmic radiation, in Cosmic Rays, Supernovae and the Interstellar Medium, eds Shapiro, M. M., Silberberg, R., & Wefel, J. P., pp. 1–28. Dordrecht: Kluwer.CrossRefGoogle Scholar
Shapiro, P. R. & Field, G. B. (1976). Consequences of a new hot component of the interstellar medium, Astrophysical Journal, 205, 762–765.CrossRefGoogle Scholar
Shapiro, S. L. & Teukolsky, S. A. (1983). Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. New York: Wiley-Interscience.CrossRefGoogle Scholar
Shimasaku, K., Ouchi, M., Furusawa, H., et al. (2005). Number density of bright Lymanbreak galaxies at z ∼ 6 in the Subaru Deep Field, Publications of the Astronomical Society of Japan, 57, 447–458.CrossRefGoogle Scholar
Shklovsky, I. S. (1953). On the nature of the radiation from the Crab Nebula, Dokladi Akademiya Nauk SSSR, 90, 983–986.Google Scholar
Shu, F. H. (1992). Physics of Astrophysics, Vol. II. Mill, Valley, California: University Science Books.Google Scholar
Shu, F. H., Adams, F. C., & Lizano, S. (1987). Star formation in molecular clouds – Observation and theory, Annual Review of Astronomy and Astrophysics, 25, 23–81.CrossRefGoogle Scholar
Silberberg, R., Tsao, C. H., & Letaw, J. R. (1988). Recent improvement of spallation cross section calculations, applicable to cosmic ray physics, in NATO ASIC Proc. 220: Genesis and Propagation of Cosmic Rays, eds Shapiro, M. M. & Wefel, J. P., pp. 357–374.CrossRefGoogle Scholar
Silva, D. R. & Cornell, M. E. (1992). A new library of stellar optical spectra, Astrophysical Journal Supplement Series, 81, 865–881.CrossRefGoogle Scholar
Simpson, J. (1983). Elemental and isotopic composition of Galactic cosmic rays, Annual Reviews of Nuclear and Particle Science, 33, 323–381.CrossRefGoogle Scholar
Skilling, J. (1971). Cosmic rays in the Galaxy: Convection or diffusion?, Astrophysical Journal, 170, 265–273.CrossRefGoogle Scholar
Skobelzyn, D. (1929). Über eine neue Art sehr schneller β-strahlen (On a new type of very fast β-rays), Zeitschrift für Physik, 54, 686–702.CrossRefGoogle Scholar
Smail, I., Ivison, R. J., & Blain, A. W. (1997). A deep sub-millimeter survey of lensing clusters: A new window on galaxy formation and evolution, Astrophysical Journal Letters, 490, L5–L8.CrossRefGoogle Scholar
Smart, W. (1977). Textbook on Spherical Astronomy, 6th edition, with revisions by R. M., Green. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Smith, H. J. & Hoffleit, D. (1963). Light variations in the superluminous radio galaxy 3C 273, Nature, 198, 650–651.CrossRefGoogle Scholar
Snellen, I. A. G., Mack, K., Schilizzi, R. T., et al. (2004). The CORALZ sample – I. Young radio-loud active galactic nuclei at low redshift, Monthly Notices of the Royal Astronomical Society, 348, 227–234.CrossRefGoogle Scholar
Soifer, B. T., Sanders, D. B., Madore, B. F., et al. (1987). The IRAS bright galaxy sample. II – The sample and luminosity function, Astrophysical Journal, 320, 238–257.CrossRefGoogle Scholar
Soltan, A. (1982). Masses of quasars, Monthly Notices of the Royal Astronomical Society, 200, 115–122.CrossRefGoogle Scholar
Sparke, L. & Gallagher, J. (2000). Galaxies in the Universe: An Introduction. Cambridge: Cambridge University Press.Google Scholar
Spinrad, H., Dey, A., & Graham, J. R. (1995). Keck observations of the most distant galaxy: 8C 1435+63 at z = 4.25, Astrophysical Journal, 438, L51–L54.CrossRefGoogle Scholar
Spitzer, L. (1962). Physics of Fully Ionized Gases, 2nd edition. New York: Interscience.Google Scholar
Spitzer, L. (1968). Diffuse Matter in Space. New York: Interscience.Google Scholar
Spitzer, L. & Härm, R. (1953). Transport phenomena in a completely ionized gas, Physical Review, 89, 977–981.CrossRefGoogle Scholar
Spitzer, L. J. & Hart, M. H. (1971). Random gravitational encounters and the evolution of spherical systems. I. Method, Astrophysical Journal, 164, 399–409.CrossRefGoogle Scholar
Springel, V., White, S. D. M., Jenkins, A., et al. (2005). Simulations of the formation, evolution and clustering of galaxies and quasars, Nature, 435, 629–636.CrossRefGoogle ScholarPubMed
Stahler, S. W. & Palla, F. (2005). The Formation of Stars. New York: Interscience.Google Scholar
Stahler, S. W., Shu, F. H., & Taam, R. E. (1980). The evolution of protostars. I – Global formulation and results, Astrophysical Journal, 241, 637–654.CrossRefGoogle Scholar
Stairs, I. H. (2004). Pulsars in binary systems: Probing binary stellar evolution and general relativity, Science, 304, 547–552.CrossRefGoogle ScholarPubMed
Starrfield, S. (1988). The classical nova outburst, in Multiwavelength Astrophysics, ed. Cordova, F. A., pp. 159–188. Cambridge: Cambridge University Press.Google Scholar
Stecker, F. W. (1975). Gamma ray astrophysics, in Origin of Cosmic Rays, eds Osborne, J. L. & Wolfendale, A. W., pp. 267–334. Dordrecht: Reidel.CrossRefGoogle Scholar
Stecker, F. W. & Salamon, M. H. (1999). Photodisintegration of ultra-high-energy cosmic rays: A new determination, Astrophysical Journal, 512, 521–526.CrossRefGoogle Scholar
Steidel, C. (1998). Galaxy evolution: Has the ‘epoch of galaxy formation’ been found?, in Eighteenth Texas Symposium on Relativistic Astrophysics and Cosmology, eds Olinto, A., Frieman, J., & Schramm, D., pp. 124–135. River Edge, NJ: World Scientific.Google Scholar
Steidel, C. C., Adelberger, K. L., Giavalisco, M., et al. (1999). Lyman-break galaxies at z ≥ 4 and the evolution of the ultraviolet luminosity density at high redshift, Astrophysical Journal, 519, 1–17.CrossRefGoogle Scholar
Steigman, G. (2004). Big Bang nucleosynthesis: Probing the first 20 minutes, in Measuring and Modeling the Universe, ed. Freedman, W. L., pp. 169–195. Cambridge: Cambridge University Press.Google Scholar
Stephenson, F. R. & Green, D. A. (2002). Historical Supernovae and their Remnants. Oxford: Clarendon Press.CrossRefGoogle Scholar
Stockton, A. & Ridgway, S. (1996). Optical and near IR observations of Cygnus A, in Cygnus A – Study of a Radio Galaxy, eds Carilli, C. L. & Harris, D. E., pp. 1–4. Cambridge: Cambridge University Press.Google Scholar
Strong, A. W., Moskalenko, I. V., & Reimer, O. (2000). Diffuse continuum gamma rays from the galaxy, Astrophysical Journal, 537, 763–784.CrossRefGoogle Scholar
Strong, A. W., Moskalenko, I. V., & Reimer, O. (2004). Diffuse Galactic continuum gamma rays: A model compatible with EGRET data and cosmic-ray measurements, Astrophysical Journal, 613, 962–976.CrossRefGoogle Scholar
Stuiver, M., Reimer, P. J., & Braziunas, T. F. (1998). Radiocarbon age calibration for terrestrial and marine samples, Radiocarbon, 40, 1127–1151.CrossRefGoogle Scholar
Suganuma, M., Yoshii, Y., Kobayashi, Y., et al. (2006). Reverberation measurements of the inner radius of the dust torus in nearby Seyfert 1 galaxies, Astrophysical Journal, 639, 46–63.CrossRefGoogle Scholar
Sunyaev, R. A. (1980). The microwave background radiation in the direction toward clusters of galaxies, Soviet Astronomy Letters, 6, 213–216.Google Scholar
Sunyaev, R. A. & Titarchuk, L. G. (1980). Comptonization of X-rays in plasma clouds – Typical radiation spectra, Astronomy and Astrophysics, 86, 121–138.Google Scholar
Sunyaev, R. A. & Zeldovich, Y. B. (1980). Microwave background radiation as a probe of the contemporary structure and history of the Universe, Annual Review of Astronomy and Astrophysics, 18, 537–560.CrossRefGoogle Scholar
Sutherland, R. S. (1998). Accurate free–free Gaunt factors for astrophysical plasmas, Monthly Notices of the Royal Astronomical Society, 300, 321–330.CrossRefGoogle Scholar
Sweet, P. A. (1958). The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmical Physics, ed. Lehnert, B., volume 6 of IAU Symposium, pp. 123–134.Google Scholar
Tananbaum, H., Gursky, H., Kellogg, E. M., et al. (1972). Discovery of a periodic binary X-ray source in Hercules from UHURU, Astrophysical Journal, 174, L144–L149.CrossRefGoogle Scholar
Tandberg-Hanssen, E. & Emslie, A. G. (1988). The Physics of Solar Flares. Cambridge: Cambridge University Press.Google Scholar
Tanvir, N. R., Fox, D. B., Levan, A. J., et al. (2009). A γ-ray burst at a redshift of z ≈ 8.2, Nature, 461, 1254–1257.CrossRefGoogle Scholar
Tayler, R. J. (1972). The Origin of the Chemical Elements. The Wykeham Science Series, London: Wykeham Publications.Google Scholar
Tayler, R. J. (1994). The Stars: Their Structure and Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Taylor, G. I. (1950a). The formation of a blast wave by a very intense explosion. I. Theoretical discussion, Proceedings of the Royal Society of London, A 201, 159–174.Google Scholar
Taylor, G. I. (1950b). The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945, Proceedings of the Royal Society of London, A 201, 175–186.Google Scholar
Taylor, J. H. & Cordes, J. M. (1993). Pulsar distances and the Galactic distribution of free electrons, Astrophysical Journal, 411, 674–684.CrossRefGoogle Scholar
Thompson, C. & Duncan, R. C. (1995). The soft gamma repeaters as very strongly magnetized neutron stars – I. Radiative mechanism for outbursts, Monthly Notices of the Royal Astronomical Society, 275, 255–300.CrossRefGoogle Scholar
Thompson, C. & Duncan, R. C. (1996). The soft gamma repeaters as very strongly magnetized neutron stars – II. Quiescent neutrino, X-Ray, and Alfvén wave emission, Astrophysical Journal, 473, 322–342.CrossRefGoogle Scholar
Thomson, J. J. (1906). Conduction of Electricity Through Gases. Cambridge: Cambridge University Press.Google Scholar
Thorne, K., Price, R., & Macdonald, D. (1986). Black Holes: The Membrane Paradigm. New Haven: Yale University Press.Google Scholar
Toller, G. N. (1990). Optical observations of Galactic and extragalactic light – Implications for Galactic structure, in The Galactic and Extragalactic Background Radiation, eds Bowyer, S. & Leinert, C., IAU Symposium No. 139, pp. 21–34. Dordrecht: Kluwer.CrossRefGoogle Scholar
Toomre, A. & Toomre, J. (1972). Galactic bridges and tails, Astrophysical Journal, 178, 623–666.CrossRefGoogle Scholar
Tremaine, S. & Gunn, J. (1979). Dynamical role of light neutral leptons in cosmology, Physical Review Letters, 42, 407–410.CrossRefGoogle Scholar
Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. (2004). The origin of the massmetallicity relation: Insights from 53,000 star-forming galaxies in the Sloan Digital Sky Survey, Astrophysical Journal, 613, 898–913.CrossRefGoogle Scholar
Trodden, M. (2006). Physics of the very early Universe: What can we learn from particle collider experiments?, Proceedings of Science, CMB2006, 1–9. This electronic publication can be found at http://pos.sissa.it/archive/conferences/027/003/CMB2006-003.pdf Google Scholar
Tsao, C. H. & Silberberg, R. (1979). Improved semiempirical estimates of cross sections, in International Cosmic Ray Conference, Vol. 2, ed. Kamata, K., pp. 202–205. Tokyo: Institute of Cosmic Ray Research.Google Scholar
Tully, R. B. & Fisher, J. R. (1977). A new method of determining distances to galaxies, Astronomy and Astrophysics, 54, 661–673.Google Scholar
Turland, B. D. & Scheuer, P. A. G. (1976). Instabilities of Kelvin–Helmholtz type for relativistic streaming, Monthly Notices of the Royal Astronomical Society, 176, 421–441.CrossRefGoogle Scholar
Ulrich, M. H., Boksenberg, A., Bromage, G. E., et al. (1984a). Detailed observations of NGC 4151 with IUE – III. Variability of the strong emission lines from 1978 February to 1980 May, Monthly Notices of the Royal Astronomical Society, 206, 221–238.CrossRefGoogle Scholar
Ulrich, M. H., Boksenberg, A., Bromage, G. E., et al. (1984b). Detailed observations of NGC 4151 with IUE – III. Variability of the strong emission lines from 1978 February to 1980 May, Monthly Notices of the Royal Astronomical Society, 209, 479.CrossRefGoogle Scholar
van den Heuvel, E. P. J. (1987). Millisecond pulsar formation and evolution, in The Origin and Evolution of Neutron Stars, IAU Symposium No. 125, eds Helfand, D. J. & Huang, J.-H., pp. 393–404. Dordrecht: Reidel.CrossRefGoogle Scholar
van der Klis, M. (2000). Millisecond oscillations in X-ray binaries, Annual Review of Astronomy and Astrophysics, 38, 717–760.CrossRefGoogle Scholar
Vashakidze, M. A. (1954). On the degree of polarization of the light near extragalactic nebulae and the Crab Nebula, Astronomicheskikh Tsirkular, No. 147, 11–13.Google Scholar
Veilleux, S. (1999). Spectroscopy of luminous infrared galaxies, in Galaxy Interactions at Low and High Redshift, eds Barnes, J. E. & Sanders, D. B., volume 186 of IAU Symposium, pp. 295–301. Dordrecht: Reidel.CrossRefGoogle Scholar
Velikhov, E. P. (1959). Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 36, 1398–1404. Translation: (1959), Soviet Physics – JETP, 9, 995–998.Google Scholar
Venturi, T., Cotton, W. D., Feretti, L., et al. (1996). VLBI observations of FRI radio galaxies, in Extragalactic Radio Sources, eds R. D., Ekers, C., Fanti, & L., Padrielli, volume 175 of IAU Symposium, pp. 124–126. Dordrecht: Reidel.CrossRefGoogle Scholar
Véron-Cetty, M.-P. & Véron, P. (2006). A catalogue of quasars and active nuclei: 12th edition, Astronomy and Astrophysics, 455, 773–777.CrossRefGoogle Scholar
Vink, J. & Laming, J. M. (2003). On the magnetic fields and particle acceleration in Cassiopeia A, Astrophysical Journal, 584, 758–769.CrossRefGoogle Scholar
Visvanathan, N. & Sandage, A. R. (1977). The color–absolute magnitude relation for E and S0 Galaxies. I - Calibration and tests for universality using Virgo and eight other nearby clusters, Astrophysical Journal, 216, 214–226.CrossRefGoogle Scholar
Völk, H. J., Berezhko, E. G., & Ksenofontov, L. T. (2005). Magnetic field amplification in Tycho and other shell-type supernova remnants, Astronomy and Astrophysics, 433, 229–240.CrossRefGoogle Scholar
Waddington, I., Dunlop, J. S., Peacock, J. A., et al. (2001). The LBDS Hercules sample of mJy radio sources at 1.4 GHz - II. Redshift distribution, radio luminosity function, and the high-redshift cut-off, Monthly Notices of the Royal Astronomical Society, 328, 882–896.CrossRefGoogle Scholar
Wall, J. V. & Peacock, J. A. (1985). Bright extragalactic radio sources at 2.7 GHz. III – The all-sky catalogue, Monthly Notices of the Royal Astronomical Society, 216, 173–192.CrossRefGoogle Scholar
Wambsganss, J. (1998). Gravitational lensing in astronomy, Living Review in Relativity, 1. Online article: accepted 28 August 1998; last amended 31 August 2001 http://www.livingreviews.org/lrr-1998-12 Google Scholar
Wandel, A. & Mushotzky, R. F. (1986). Observational determination of the masses of active galactic nuclei, Astrophysical Journal, 306, L61–L66.CrossRefGoogle Scholar
Wang, W., Harris, M. J., Diehl, R., et al. (2007). SPI observations of the diffuse 60Fe emission in the Galaxy, Astronomy and Astrophysics, 469, 1005–1012.CrossRefGoogle Scholar
Wang, W.-H., Cowie, L. L., & Barger, A. J. (2006). A near-infrared analysis of the submillimeter background and the cosmic star-formation history, Astrophysical Journal, 647, 74–85.CrossRefGoogle Scholar
Warner, B. (1995). Cataclysmic Variable Stars. Cambridge: Cambridge University Press.Google Scholar
Warren, S. J., Hewett, P. C., Irwin, M. J., et al. (1987). First observation of a quasar with a redshift of 4, Nature, 325, 131–133.CrossRefGoogle Scholar
Wasson, J. (1985). Meteorites: Their Record of Early Solar System History. San Francisco: W. H. Freeman.Google Scholar
Watson, M. G. & King, A. R. (1991). Accretion discs in low-mass X-ray binaries., in IAU Colloquium 129: The 6th Institute d'Astrophysique de Paris (IAP) Meeting: Structure and Emission Properties of Accretion Disks, eds Bertout, C., Collin-Souffin, S., & Lasota, J. P., pp. 19–32. Gif-sur-Yvette: Editions Frontiéres.Google Scholar
Wdowczyk, J. & Wolfendale, A. W. (1984). Galactic cosmic rays above 1018 eV, Journal of Physics G Nuclear Physics, 10, 1453–1463.CrossRefGoogle Scholar
Wdowczyk, J. & Wolfendale, A. W. (1989). Highest energy cosmic rays, Annual Review of Nuclear and Particle Science, 39, 43–71.CrossRefGoogle Scholar
Webber, W. R. (1983). Cosmic ray electrons and positrons – A review of current measurements and some implications, in NATO ASIC Proc. 107: Composition and Origin of Cosmic Rays, ed. Shapiro, M. M., pp. 83–100.CrossRefGoogle Scholar
Webber, W. R., Kish, J. C., & Schrier, D. A. (1985). Cosmic ray isotope measurements with a new Cerenkov X total energy telescope, 19th International Cosmic Ray Conference, 2, 88–91.Google Scholar
Webber, W. R., Kish, J. C., & Schrier, D. A. (1990a). Formula for calculating partial cross sections for nuclear reactions of nuclei with E ≳ 200 MeV/nucleon in hydrogen targets, Physical Review C, 41, 566–571.CrossRefGoogle Scholar
Webber, W. R., Kish, J. C., & Schrier, D. A. (1990b). Individual charge changing fragmentation cross sections of relativistic nuclei in hydrogen, helium, and carbon targets, Physical Review C, 41, 533–546.CrossRefGoogle ScholarPubMed
Webber, W. R., Kish, J. C., & Schrier, D. A. (1990c). Individual isotopic fragmentation cross sections of relativistic nuclei in hydrogen, helium, and carbon targets, Physical Review C, 41, 547–565.CrossRefGoogle ScholarPubMed
Webber, W. R., Kish, J. C., & Schrier, D. A. (1990d). Total charge and mass changing cross sections of relativistic nuclei in hydrogen, helium, and carbon targets, Physical Review C, 41, 520–532.Google ScholarPubMed
Weber, J. (1969). Evidence for discovery of gravitational radiation, Physical Review Letters, 22, 1320–1324.CrossRefGoogle Scholar
Weber, J. (1970). Anisotropy and polarization in the gravitational-radiation experiments, Physical Review Letters, 25, 180–184.CrossRefGoogle Scholar
Webster, A. S. (1970). On the diffusion-loss model of cosmic ray electron propagation in the Galaxy, Astrophysical Letters, 5, 189–192.Google Scholar
Webster, A. S. (1971). Cosmic Ray Electrons and Galactic Radio Emission. PhD Dissertation. Cambridge University.Google Scholar
Webster, A. S. (1974). The spectrum of the galactic non-thermal background radiational observations at 408, 610 and 1407 MHz, Monthly Notices of the Royal Astronomical Society, 166, 355–372.CrossRefGoogle Scholar
Webster, B. L. & Murdin, P. (1972). Cygnus X-1: A spectroscopic binary with a heavy companion? Nature, 235, 37–38.CrossRefGoogle Scholar
Wefel, J. P. (1988). An overview of cosmic ray research – Composition, acceleration and propagation, in Genesis and Propagation of Cosmic Rays, eds Shapiro, M. M. & Wefel, J. P., pp. 1–9. Dordrecht: Reidel.Google Scholar
Wefel, J. P. (1991). The composition of the cosmic rays: An update, in NATO ASIC Proc. 337: Cosmic Rays, Supernovae and the Interstellar Medium, eds Shapiro, M. M., Silberberg, R., & Wefel, J. P., pp. 29–56. Dordrecht: Kluwer.CrossRefGoogle Scholar
Weinheimer, C. (2001). Neutrino mass from tritium β-decay, in Dark Matter in Astro- and Particle Physics, Proceedings of the International Conference DARK 2000, ed. Klapdor-Kleingrothaus, H. V., pp. 513–519. Berlin: Springer-Verlag.Google Scholar
Weisskopf, V. F. (1981). The formation of Cooper pairs and the nature of superconducting currents, Contemporary Physics, 22, 375–395.Google Scholar
Wentzel, D. G. (1974). Cosmic-ray propagation in the galaxy – Collective effects, Annual Review of Astronomy and Astrophysics, 12, 71–96.CrossRefGoogle Scholar
Westfold, K. C. (1959). The polarisation of synchrotron radiation, Astrophysical Journal, 130, 241–258.Google Scholar
Wheeler, J. A. (1968). Our Universe: The known and the unknown, American Scientist, 56, 1–20.Google Scholar
White, D. A., Fabian, A. C., Allen, S. W., et al. (1994). A ROSAT HRI observation of the Abell 478 cluster of galaxies, Monthly Notices of the Royal Astronomical Society, 269, 589–606.CrossRefGoogle Scholar
White, S. D. (1989). Observable signatures of young galaxies, in The Epoch of Galaxy Formation, eds Frenk, C. S., Ellis, R. S., Shanks, T., et al. pp. 15–30. Dordrecht: Kluwer.CrossRefGoogle Scholar
Whiteoak, J. B. (1974). The observed characteristics of the local magnetic field, in Galactic Radio Astronomy, eds Kerr, F. J. & Simonson, S. C., volume 60 of IAU Symposium, pp. 137–150. Dordrecht: Reidel.Google Scholar
Wielebinski, R. (1993). Radio astronomy techniques of observing magnetic fields: The Galaxy, in The Cosmic Dynamo, eds Krause, F., Radler, K. H., & Rudiger, G., volume 157 of IAU Symposium, pp. 271–277. Dordrecht: Kluwer.CrossRefGoogle Scholar
Wilkes, B. (1999). The spectral energy distributions of active galactic nuclei, in Quasars and Cosmology, eds Ferland, G. & Baldwin, J., pp. 15–42. San Francisco: Astronomical Society of the Pacific Conference Series, Vol. 162.Google Scholar
Wilkes, B. J., Tananbaum, H., Worrall, D. M., et al. (1994). The Einstein database of IPC X-ray observations of optically selected and radio-selected quasars, 1, Astrophysical Journal Supplement, 92, 53–109.CrossRefGoogle Scholar
Wilkinson, P. N., Henstock, D. R., Browne, I. W., et al. (2001). Limits on the cosmological abundance of supermassive compact objects from a search for multiple imaging in compact radio sources, Physical Review Letters, 86, 584–587.CrossRefGoogle ScholarPubMed
Wilkinson, P. N., Polatidis, A. G., Readhead, A. C. S., et al. (1994). Two-sided ejection in powerful radio sources: The compact symmetric objects, Astrophysical Journal Letters, 432, L87–L90.CrossRefGoogle Scholar
Willingale, R., Bleeker, J. A. M., van der Heyden, K. J., et al. (2003). The mass and energy budget of Cassiopeia A, Astronomy and Astrophysics, 398, 1021–1028.CrossRefGoogle Scholar
Willis, A. J., van der Hucht, K. A., Conti, P. S., et al. (1986). An atlas of high resolution IUE ultraviolet spectra of 14 Wolf–Rayet stars, Astronomy and Astrophysics Supplement Series, 63, 417–599.Google Scholar
Wilson, A. S., Arnaud, K. A., Smith, D. A., et al. (2002). Cygnus A, in New Visions of the Universe in the XMM-Newton and Chandra Era, ed. Jansen, F., European Space Agency ESA SP-488, ArXiv: astro-ph/0202319v1, 1–9.Google Scholar
Wilson, A. S., Young, A. J., & Shopbell, P. L. (2000). Chandra observations of Cygnus A: Magnetic field strengths in the hot spots of a radio galaxy, Astrophysical Journal Letters, 544, L27–L30.CrossRefGoogle Scholar
Wolfenstein, L. (1978). Neutrino oscillations in matter, Physical Review D, 17, 2369–2374.CrossRefGoogle Scholar
Woltjer, L. (1990). Phenomenology of active galactic nuclei, in Saas-Fee Advanced Course 20. Active Galactic Nuclei, eds Courvoisier, T. J.-L. & Mayor, M., pp. 1–55. Berlin: Springer-Verlag.Google Scholar
Woosley, S. & Janka, T. (2005). The physics of core-collapse supernovae, Nature Physics, 1, 147–154.CrossRefGoogle Scholar
Woosley, S. E. (1986). Nucleosynthesis and stellar evolution, in Saas-Fee Advanced Course 16: Nucleosynthesis and Chemical Evolution, eds Hauck, B., Maeder, A., & Meynet, G., pp. 1–195. Geneva: Geneva Observatory Publications.Google Scholar
Woosley, S. E. & Weaver, T. A. (1986). The physics of supernova explosions, Annual Review of Astronomy and Astrophysics, 24, 205–253.CrossRefGoogle Scholar
Wrobel, J. M. & Lind, K. R. (1990). The double-lobed blazar 3C 371, Astrophysical Journal, 348, 135–140.CrossRefGoogle Scholar
Yanasak, N. E., Wiedenbeck, M. E., Mewaldt, R. A., et al. (2001). Measurement of the secondary radionuclides 10Be, 26Al, 36Cl, 54Mn, and 14C and implications for the Galactic cosmic-ray age, Astrophysical Journal, 563, 768–792.CrossRefGoogle Scholar
Young, P. J., Westphal, J. A., Kristian, J., et al. (1978). Evidence for a supermassive object in the nucleus of the galaxy M87 from SIT and CCD area photometry, Astrophysical Journal, 221, 721–730.CrossRefGoogle Scholar
Yukawa, H. (1935). On the interaction of elementary particles. I, Proceedings of the Physical-Mathematical Society of Japan, 17, 48–57.Google Scholar
Zamorani, G., Henry, J. P., Maccacaro, T., et al. (1981). X-ray studies of quasars with the Einstein Observatory. II, Astrophysical Journal, 245, 357–374.CrossRefGoogle Scholar
Zaritsky, D., Kennicutt, R. C., & Huchra, J. P. (1994). H II regions and the abundance properties of spiral galaxies, Astrophysical Journal, 420, 87–109.CrossRefGoogle Scholar
Zatsepin, G. T. & Kuz'min, V. A. (1966). Upper limit of the spectrum of cosmic rays, Soviet Journal of Experimental and Theoretical Physics Letters, 4, 78–80.Google Scholar
Zavlin, V. E. (2009). Thermal emission from isolated neutron stars: Theoretical and observational aspects, in Neutron Stars and Pulsars, ed. Becker, W., volume 357 of Astronomy and Space Science Library. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Zeldovich, Y. & Sunyaev, R. (1969). The interaction of matter and radiation in a hot-model universe, Astrophysics and Space Science, 4, 301–316.CrossRefGoogle Scholar
Zeldovich, Y. B. & Raizer, Y. P. (2002). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Mineola, New York: Dover. Originally publshed in English by Academic Press, New York in two volumes, 1966, 1967.Google Scholar
Zombeck, M. V. (2006). Handbook of Space Astronomy and Astrophysics, 3rd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Zwicky, F. & Zwicky, M. A. (1971). Catalogue of Selected Compact Galaxies and of Post-Eruptive Galaxies. Guemligen: Zwicky.Google Scholar
Challinor, A. & Lasenby, A. (1998). Relativistic corrections to the Sunyaev–Zeldovich effect, Astrophysical Journal, 499, 1–6.Google Scholar
Chambers, K. C., Miley, G. K., & van Breugel, W. J. M. (1987). Alignment of radio and optical orientations in high-redshift radio galaxies, Nature, 329, 604–606.CrossRefGoogle Scholar
Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability. New York: Dover.Google Scholar
Chandrasekhar, S. (1983). The Mathematical Theory of Black Holes. Oxford: Clarendon Press.Google Scholar
Charbonneau, D., Brown, T. M., Latham, D. W., et al. (2000). Detection of planetary transits across a Sun-like star, Astrophysical Journal, 529, L45–L48.CrossRefGoogle ScholarPubMed
Charlot, S. & Longhetti, M. (2001). Nebular emission from star-forming galaxies, Monthly Notices of the Royal Astronomical Society, 323, 887–903.CrossRefGoogle Scholar
Chevalier, R. A. (1998). Synchrotron self-absorption in radio supernovae, Astrophysical Journal, 499, 810–819.Google Scholar
Christensen-Dalsgaard, J. (2002). Helioseismology, Reviews of Modern Physics, 74, 1073–1129.CrossRefGoogle Scholar
Christian, D. J. (2002). The third Extreme Ultraviolet Explorer right angle program catalog: The last years, Astronomical Journal, 124, 3478–3484.CrossRefGoogle Scholar
Chupp, E. L. (1976). Gamma-Ray Astronomy: Nuclear Transition Region. Dordrecht: Reidel. (Geophysics and Astrophysics Monographs. Volume 14.)CrossRefGoogle Scholar
Chwolson, O. (1924). Über eine mögliche Form fiktiver Doppelsterne, Astronomische Nachrichten, 221, 329.CrossRefGoogle Scholar
Cimatti, A., Daddi, E., Renzini, A., et al. (2004). Old galaxies in the young Universe, Nature, 430, 184–187.CrossRefGoogle ScholarPubMed
Clark, J. S., Goodwin, S. P., Crowther, P. A., et al. (2002). Physical parameters of the high-mass X-ray binary 4U1700–37, Astronomy and Astrophysics, 392, 909–920.CrossRefGoogle Scholar
Clavel, J., Reichert, G. A., & 56 authors (1991). Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I – An 8 month campaign of monitoring NGC 5548 with IUE, Astrophysical Journal, 366, 64–81.CrossRefGoogle Scholar
Clemmow, P. C. W. & Dougherty, J. P. (1969). Electrodynamics of Particles and Plasmas. Reading, Massachusetts: Addison-Wesley.Google Scholar
Coburn, W., Kretschmar, P., Kreykenbohm, I., et al. (2006). Cyclotron features in X-ray spectra of accreting pulsars, Advances in Space Research, 38, 2747–2751.CrossRefGoogle Scholar
Cohen, M. H., Lister, M. L., Homan, D. C., et al. (2007). Relativistic beaming and the intrinsic properties of extragalactic radio jets, Astrophysical Journal, 658, 232–244.CrossRefGoogle Scholar
Cole, S., Percival, W. J., Peacock, J. A., et al. (2005). The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final data set and cosmological implications, Monthly Notices of the Royal Astronomical Society, 362, 505–534.CrossRefGoogle Scholar
Colless, M., Dalton, G., Maddox, S., et al. (2001). The 2dF Galaxy Redshift Survey: Spectra and redshifts, Monthly Notices of the Royal Astronomical Society, 328, 1039–1063.CrossRefGoogle Scholar
Colless, M. & Dunn, A. M. (1996). Structure and dynamics of the Coma Cluster, Astrophysical Journal, 458, 435–454.CrossRefGoogle Scholar
Compton, A. H. (1923). The spectrum of scattered X-rays, Physical Review, 22, 409–413.CrossRefGoogle Scholar
Condon, J. J. (1989). The 1.4 gigahertz luminosity function and its evolution, Astrophysical Journal, 338, 13–23.CrossRefGoogle Scholar
Condon, J. J. (1992). Radio emission from normal galaxies, Annual Review of Astronomy and Astrophysics, 30, 575–611.CrossRefGoogle Scholar
Cordes, J. M. & Lazio, T. J. W. (2002). NE2001. I. A new model for the Galactic distribution of free electrons and its fluctuations, ArXiv Astrophysics e-prints astro-ph/0207156.Google Scholar
Cordes, J. M. & Lazio, T. J. W. (2003). NE2001. II. Using radio propagation data to construct a model for the Galactic distribution of free electrons, ArXiv Astrophysics e-prints astro-ph/0301598.Google Scholar
Costa, E., Frontera, F., Heise, J., et al. (1997). Discovery of an X-ray afterglow associated with the gamma-ray burst of 28 February 1997, Nature, 387, 783–785.CrossRefGoogle Scholar
Côté, P., McLaughlin, D. E., Cohen, J. G., et al. (2003). Dynamics of the globular cluster system associated with M49 (NGC 4472): Cluster orbital properties and the distribution of dark matter, Astrophysical Journal, 591, 850–877.CrossRefGoogle Scholar
Côté, P., McLaughlin, D. E., Hanes, D. A., et al. (2001). Dynamics of the globular cluster system associated with M87 (NGC 4486). II. Analysis, Astrophysical Journal, 559, 828–850.CrossRefGoogle Scholar
Cowie, L. (1988). Protogalaxies, in The Post-Recombination Universe, eds Kaiser, N. & Lasenby, A. N., pp. 1–18. Dordrecht: Kluwer.Google Scholar
Cowie, L., Lilly, S., Gardner, J., et al. (1988). A cosmologically significant population of galaxies dominated by very young star formation, Astrophysical Journal, 332, L29–L32.CrossRefGoogle Scholar
Cowie, L. L., Barger, A. J., & Kneib, J.-P. (2002). Faint submillimeter counts from deep 850 micron observations of the lensing clusters A370, A851, and A2390, Astronomical Journal, 123, 2197–2205.CrossRefGoogle Scholar
Cowie, L. L., Songaila, A., Hu, E. M., et al. (1996). New insight on galaxy formation and evolution from Keck spectroscopy of the Hawaii Deep Fields, Astronomical Journal, 112, 839–864.CrossRefGoogle Scholar
Cox, D. P. & Smith, B. W. (1974). Large-scale effects of supernova remnants on the Galaxy: Generation and maintenance of a hot network of tunnels, Astrophysical Journal Letters, 189, L105–L108.CrossRefGoogle Scholar
Cruddace, R., Paresce, F., Bowyer, S., et al. (1974). On the opacity of the interstellar medium to ultrasoft X-rays and extreme-ultraviolet radiation, Astrophysical Journal, 187, 497–504.CrossRefGoogle Scholar
Dabrowski, Y., Fabian, A. C., Iwasawa, K., et al. (1997). The profile and equivalent width of the X-ray iron emission line from a disc around a Kerr black hole, Monthly Notices of the Royal Astronomical Society, 288, L11–L15.CrossRefGoogle Scholar
Damon, P. E., Kaimei, D., Kocharov, G. E., et al. (1995). Radiocarbon production by the gamma-ray component of supernova explosions, Radiocarbon, 37, 599–604.CrossRefGoogle Scholar
Damon, P. E., Lerman, J. C., & Long, A. (1978). Temporal fluctuations of atmospheric 14C: Causal factors and implications, Annual Review of Earth and Planetary Science, 6, 457–494.CrossRefGoogle Scholar
Davidson, W. & Davies, M. (1964). Interpretation of the counts of radio sources in terms of a 4-parameter family of evolutionary universes, Monthly Notices of the Royal Astronomical Society, 127, 241–255.CrossRefGoogle Scholar
Davies, R. D. (2006). An anomalous dust emission component? – The observations, in CMB and Physics of the Early Universe, pp. 1–8. Proceedings of Science – online journal. http://pos.sissa.it//archive/conferences/027/018/CMB2006_018.pdf Google Scholar
Davies, R. L., Efstathiou, G., Fall, S. M., et al. (1983). The kinematic properties of faint elliptical galaxies, Astrophysical Journal, 266, 41–57.CrossRefGoogle Scholar
Davis, L. & Greenstein, J. L. (1951). The polarization of starlight by aligned dust grains, Astrophysical Journal, 114, 206–240.CrossRefGoogle Scholar
de Plaa, J., Kaastra, J. S., Méndez, M., et al. (2005). The temperature structure in the core of Sérsic 159–03, Advances in Space Research, 36, 601–604.CrossRefGoogle Scholar
de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G. Jr., et al. (1991). Third Reference Catalogue of Bright Galaxies: Containing Information on 23,024 Galaxies with Reference to Papers Published Between 1913 and 1988. Berlin: Springer-Verlag.Google Scholar
de Zotti, G., Massardi, M., Negrello, M., et al. (2010). Radio and millimeter continuum surveys and their astrophysical implications, Astronomy and Astrophysics Review, 18, 1–65.CrossRefGoogle Scholar
Dermer, C. D. (1986). Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation, Astronomy and Astrophysics, 157, 223–229.Google Scholar
Dermer, C. D. & Menon, G. (2009). High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos. Princeton: Princeton University Press.Google Scholar
Deubner, F.-L. & Gough, D. (1984). Helioseismology: Oscillations as a diagnostic of the Solar interior, Annual Review of Astronomy and Astrophysics, 22, 593–619.CrossRefGoogle Scholar
Dey, A. (1997). The host galaxies of distant radio sources, in The Hubble Space Telescope and the High Redshift Universe, eds Tanvir, N. R., Aragón-Salamanca, A., & Wall, J. V., pp. 373–376. Singapore: World Scientific.Google Scholar
Diehl, R., Halloin, H., Kretschmer, K., et al. (2006a). Radioactive26 Al from massive stars in the Galaxy, Nature, 439, 45–47.CrossRefGoogle Scholar
Diehl, R., Prantzos, N., & von Ballmoos, P. (2006b). Astrophysical constraints from gammaray spectroscopy, Nuclear Physics A, 777, 70–97.CrossRefGoogle Scholar
Dirac, P. (1928a). The quantum theory of the electron, Proceedings of the Royal Society of London, A117, 610–624.Google Scholar
Dirac, P. (1928b). The quantum theory of the electron II, Proceedings of the Royal Society of London, A118, 351–361.Google Scholar
Djorgovski, S. G. & Davis, M. (1987). Fundamental properties of elliptical galaxies, Astrophysical Journal, 313, 59–68.CrossRefGoogle Scholar
Doeleman, S. S., Weintroub, J., Rogers, A. E. E., et al. (2008). Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre, Nature, 455, 78–80.CrossRefGoogle Scholar
Dombrovski, V. A. (1954). On the nature of the radiation from the Crab Nebula, Dokladi Akademiya Nauk SSSR, 94, 1021–1024.Google Scholar
Dopita, M. A. & Sutherland, R. S. (1996). Spectral signatures of fast shocks. I. Low-density model grid, Astrophysical Journal Supplement, 102, 161–188.CrossRefGoogle Scholar
Draine, B. T. (2003). Interstellar dust grains, Annual Reviews of Astronomy and Astrophysics, 41, 241–289.CrossRefGoogle Scholar
Draine, B. T. (2004). Astrophysics of dust in cold clouds, in The Cold Universe, Saas-Fee Advanced Course 32, eds Blain, A. W., Combes, F., Draine, B. T., Pfenniger, D., & Revaz, Y., pp. 213–304. Berlin: Springer-Verlag.Google Scholar
Draine, B. T. & Lazarian, A. (1998). Electric dipole radiation from spinning dust grains, Astrophysical Journal, 508, 157–179.CrossRefGoogle Scholar
Dreher, J. W., Carilli, C. L., & Perley, R. A. (1987). The Faraday rotation of Cygnus A – Magnetic fields in cluster gas, Astrophysical Journal, 316, 611–625.CrossRefGoogle Scholar
Dressler, A. (1980). Galaxy morphology in rich clusters – Implications for the formation and evolution of galaxies, Astrophysical Journal, 236, 351–365.CrossRefGoogle Scholar
Dressler, A., Lynden-Bell, D., Burstein, D., et al. (1987). Spectroscopy and photometry of elliptical galaxies. I – A new distance estimator, Astrophysical Journal, 313, 42–58.CrossRefGoogle Scholar
Driver, S. P., Allen, P. D., Graham, A. W., et al. (2006). The Millennium Galaxy Catalogue: Morphological classification and bimodality in the colour–concentration plane, Monthly Notices of the Royal Astronomical Society, 368, 414–434.CrossRefGoogle Scholar
Drury, L. O., Duffy, P., Eichler, D., et al. (1999). On ‘box’ models of shock acceleration and electron synchrotron spectra, Astronomy and Astrophysics, 347, 370–374.Google Scholar
Drury, L. O. & Falle, S. A. E. G. (1986). On the stability of shocks modified by particle acceleration, Monthly Notices of the Royal Astronomical Society, 223, 353–376.CrossRefGoogle Scholar
Dunlop, J. S. (1998). Cosmic star-formation and radio source evolution, in Astrophysics and Space Science Library, Dordrecht: Kluwer Vol. 226: Observational Cosmology with the New Radio Surveys, eds Bremer, M. N., Jackson, N., & Perez-Fournon, I., pp. 157–164.Google Scholar
Dunlop, J. S. & Peacock, J. A. (1990). The redshift cut-off in the luminosity function of radio galaxies and quasars, Monthly Notices of the Royal Astronomical Society, 247, 19–42.Google Scholar
Dunlop, J. S., Peacock, J. A., Spinrad, H., et al. (1996). A 3.5-Gyr-old galaxy at redshift 1.55, Nature, 381, 581–584.CrossRefGoogle Scholar
Edelson, R., Vaughan, S., Warwick, R., et al. (1999). The ROSAT Wide Field Camera Extragalactic Survey, Monthly Notices of the Royal Astronomical Society, 307, 91–98.CrossRefGoogle Scholar
Efstathiou, G. (1990). Cosmological perturbations, in Physics of the Early Universe, eds Peacock, J. A., Heavens, A. F., & Davies, A. T., pp. 361–463. Edinburgh: SUSSP Publications.Google Scholar
Eguchi, K., Enomoto, S., & 97 authors (2003). First results from Kamland: Evidence for reactor anti-neutrino disappearance, Physical Review Letters, 90, 021802.CrossRefGoogle Scholar
Einstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annalen der Physik, 322, 132–148.CrossRefGoogle Scholar
Einstein, A. (1915). Die Feldgleichung der Gravitation (The Field Equations of Gravitation), Sitzungsberichte, Königlich Preussische Akademie der Wissenschaften (Berlin), II, 844–847.Google Scholar
Einstein, A. (1936). Lens-like action of a star by the deviation of light in the gravitational field, Science, 84, 506–507.CrossRefGoogle ScholarPubMed
Ellis, G. R. A. (1982). Galactic radio emission below 16.5 MHz and the galactic emission measure, Australian Journal of Physics, 35, 91–104.CrossRefGoogle Scholar
Ellis, R. G. (1997). Faint blue galaxies, Annual Review of Astronomy and Astrophysics, 35, 389–443.CrossRefGoogle Scholar
Ellis, S. C. & Bland-Hawthorn, J. (2006). GalaxyCount: A JAVA calculator of galaxy counts and variances in multiband wide-field surveys to 28 AB mag, Monthly Notices of the Royal Astronomical Society, 377, 815–828.CrossRefGoogle Scholar
Enge, H. A. (1966). Introduction to Nuclear Physics. London: Addison-Wesley.Google Scholar
Erber, T. (1966). High-energy electromagnetic conversion processes in intense magnetic fields, Reviews of Modern Physics, 38, 626–659.CrossRefGoogle Scholar
Eugster, O., Herzog, G. F., Marti, K., et al. (2006). Irradiation records, cosmic-ray exposure ages, and transfer times of meteorites, in Meteorites and the Early Solar System II, eds Lauretta, D. S. and McSween, H. Y. Jr., pp. 829–851. Tuscon: University of Arizona Press.Google Scholar
Fabbiano, G., Trinchieri, G., Elvis, M., et al. (1984). An X-ray survey of a complete sample of 3CR radio galaxies, Astrophysical Journal, 277, 115–131.CrossRefGoogle Scholar
Faber, S. M. (1973). Variations in spectral-energy distributions and absorption-line strengths among elliptical galaxies, Astrophysical Journal, 179, 731–754.CrossRefGoogle Scholar
Faber, S. M. (1999). Black holes in galaxy centers, in Formation of Structure in the Universe, eds Dekel, A. & Ostriker, J. P., pp. 337–359, Cambridge: Cambridge University Press.Google Scholar
Faber, S. M. & Jackson, R. E. (1976). Velocity dispersions and mass-to-light ratios for elliptical galaxies, Astrophysical Journal, 204, 668–683.CrossRefGoogle Scholar
Fabian, A. C. (1994). Cooling flows in clusters of galaxies, Annual Review of Astronomy and Astrophysics, 32, 277–318.CrossRefGoogle Scholar
Fabian, A. C. (1998). Emission lines: signatures of relativistic rotation, in Theory of Black Hole Accretion Disks, eds Abramowicz, M. A., Bjornsson, G., & Pringle, J. E., pp. 123–133. Cambridge: Cambridge University Press.Google Scholar
Fabian, A. C. (2009). Black holes at work, Astronomy and Geophysics, 30, 3.18–3.24.Google Scholar
Fabian, A. C. & Rees, M. J. (1995). The accretion luminosity of a massive black hole in an elliptical galaxy, Monthly Notices of the Royal Astronomical Society, 277, L55–L58.Google Scholar
Fabian, A. C., Sanders, J. S., Ettori, S., et al. (2000). Chandra imaging of the complex X-ray core of the Perseus Cluster, Monthly Notices of the Royal Astronomical Society, 318, L65–L68.CrossRefGoogle Scholar
Fabian, A. C., Sanders, J. S., Taylor, G. B., et al. (2006). A very deep Chandra observation of the Perseus Cluster: Shocks, ripples and conduction, Monthly Notices of the Royal Astronomical Society, 366, 417–428.CrossRefGoogle Scholar
Fabian, A. C., Vaughan, S., Nandra, K., et al. (2002). A long hard look at MCG-6-30-15 with XMM-Newton, Monthly Notices of the Royal Astronomical Society, 335, L1–L5.CrossRefGoogle Scholar
Fabricant, D. G., Lecar, M., & Gorenstein, P. (1980). X-ray measurements of the mass of M87, Astrophysical Journal, 241, 552–560.CrossRefGoogle Scholar
Fan, X., Hennawi, J. F., Richards, G. T., et al. (2004). A survey of z ≥ 5.7 quasars in the Sloan Digital Sky Survey. III. Discovery of five additional quasars, Astronomical Journal, 128, 515–522.CrossRefGoogle Scholar
Fan, X., Narayanan, V. K., Lupton, R. H., et al. (2001). A survey of z ≥ 5.8 quasars in the Sloan Digital Sky Survey. I. Discovery of three new quasars and the spatial density of luminous quasars at z ∼ 6, Astronomical Journal, 122, 2833–2849.CrossRefGoogle Scholar
Fanaroff, B. L. & Riley, J. M. (1974). The morphology of extragalactic radio sources of high and low luminosity, Monthly Notices of the Royal Astronomical Society, 167, 31P–36P.CrossRefGoogle Scholar
Felten, J. (1977). Study of the luminosity function for field galaxies, Astronomical Journal, 82, 861–878.CrossRefGoogle Scholar
Felten, J. (1985). Galaxy luminosity functions, M/L ratios, and closure of the Universe – Numbers and problems, Comments on Astrophysics, 11, 53–67.Google Scholar
Fermi, E. (1949). On the origin of the cosmic radiation, Physical Review, 75, 1169–1174.CrossRefGoogle Scholar
Fernini, I., Burns, J. O., Leahy, J. P., et al. (1991). Depolarization asymmetry in the quasar 3C 47, Astrophysical Journal, 381, 63–71.CrossRefGoogle Scholar
Ferrario, D. T., Wickramsinghe, D. T., Bailey, I. R., et al. (1989). EXO 033319-2554.2: An eclipsing AM Herculis system showing cyclotron emission features, Astrophysical Journal, 337, 832–842.CrossRefGoogle Scholar
Feynman, R., Leighton, R. B., & Sands, M. L. (1965). Feynman Lectures on Physics. Redwood City, California: Addison-Wesley.Google Scholar
Feynman, R. P. (1972). Statistical Mechanics: A Set of Lectures. Reading, Massachusetts: W. A. Benjamin.Google Scholar
Fich, M. & Tremaine, S. (1991). The mass of the Galaxy, Annual Review of Astronomy and Astrophysics, 29, 409–445.CrossRefGoogle Scholar
Field, G. B. (1965). Thermal instability, Astrophysical Journal, 142, 531–567.CrossRefGoogle Scholar
Field, G. B., Goldsmith, D. W., & Habing, H. J. (1969). Cosmic-ray heating of the interstellar gas, Astrophysical Journal Letters, 55, L149–L154.CrossRefGoogle Scholar
Fitch, W. S., Pacholczyk, A. G., & Weymann, R. J. (1967). Light variations of the Seyfert galaxy NGC 4151, Astrophysical Journal, 150, L67–L70.CrossRefGoogle Scholar
Fitzpatrick, R. (2008). The Physics of Plasmas. Lulu publishers. available at: http://farside.ph.utexas.edu/teaching/plasma/380.pdf Google Scholar
Ford, H. C., Harms, R. J., Tsvetanov, Z. I., et al. (1994). Narrowband HST Images of M87: Evidence for a disk of ionized gas around a massive black hole, Astrophysical Journal Letters, 435, L27–L30.CrossRefGoogle Scholar
Forman, W., Jones, C., Cominsky, L., et al. (1978). The fourth UHURU catalog of X-ray sources, Astrophysical Journal Supplement Series, 38, 357–412.CrossRefGoogle Scholar
Fort, B. & Mellier, Y. (1994). Arc(let)s in clusters of galaxies, Astronomy and Astrophysics Reviews, 5, 239–292.CrossRefGoogle Scholar
Francis, P. J., Hewett, P. C., Foltz, C. B., et al. (1991). A high signal-to-noise ratio composite quasar spectrum, Astrophysical Journal, 373, 465–470.CrossRefGoogle Scholar
Frank, J., King, A., & Raine, D. J. (2002). Accretion Power in Astrophysics, 3rd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Frank, J., King, A. R., & Lasota, J.-P. (1987). The light curves of low-mass X-ray binaries, Astronomy and Astrophysics, 178, 137–142.Google Scholar
Frolov, V. P. & Novikov, I. D. (1998). Black Hole Physics: Basic Concepts and New Developments. Dordrecht: Kluwer.CrossRefGoogle Scholar
Fukuda, S., Fukuda, Y., & 117 authors (2001). Solar 8B and hep neutrino measurements from 1258 days of Super-Kamiokande data, Physical Review Letters, 86, 5651–5655.CrossRefGoogle ScholarPubMed
Galama, T. J., Vreeswijk, P. M., van Paradijs, J., et al. (1998). An unusual supernova in the error box of the γ-ray burst of 25 April 1998, Nature, 395, 670–672.CrossRefGoogle Scholar
Garcia-Munoz, M., Simpson, J. A., Guzik, T. G., et al. (1987). Cosmic-ray propagation in the Galaxy and in the heliosphere – The path-length distribution at low energy, Astrophysical Journal Supplement, 64, 269–304.CrossRefGoogle Scholar
Garrington, S. T., Leahy, J. P., Conway, R. G., et al. (1988). A systematic asymmetry in the polarization properties of double radio sources with one jet, Nature, 331, 147–149.CrossRefGoogle Scholar
Gavazzi, R., Treu, T., Rhodes, J. D., et al. (2007). The Sloan Lens ACS Survey. IV: The mass density profile of early-type galaxies out to 100 effective radii, Astrophysical Journal, 667, 176–190.CrossRefGoogle Scholar
Gehrels, N., Ramirez-Ruiz, E., & Fox, D. B. (2009). Gamma-ray bursts in the Swift era, Annual Review of Astronomy and Astrophysics, 47, 567–617.CrossRefGoogle Scholar
Geiger, H. & Müller, W. (1928). Das Electronenzählrohr (The electron-counting tube), Physicalische Zeitschrift, 29, 839–841.Google Scholar
Geiger, H. & Müller, W. (1929). Technische Bemerkungen zum Electronenzählrohr (Technical remarks on the electron counting tube), Physicalische Zeitschrift, 30, 489–493.Google Scholar
Genzel, R., Schödel, R., Ott, T., et al. (2003). Near-infrared flares from accreting gas around the supermassive black hole at the galactic centre, Nature, 425, 934–937.CrossRefGoogle Scholar
Ghez, A. M., Morris, M., Becklin, E. E., et al. (2000). The accelerations of stars orbiting the milky way's central black hole, Nature, 407, 349–351.CrossRefGoogle ScholarPubMed
Giacalone, J. & Jokipii, J. R. (2007). Magnetic field amplification by shocks in turbulent fluids, Astrophysical Journal Letters, 663, L41–L44.CrossRefGoogle Scholar
Giacconi, R., Gursky, H., Kellogg, E., et al. (1971). Discovery of periodic X-ray pulsations in Centaurus X-3 from UHURU, Astrophysical Journal, 167, L67–L73.CrossRefGoogle Scholar
Giacconi, R., Gursky, H., & van Speybroeck, L. P. (1968). Observational techniques in X-ray astronomy, Annual Review of Astronomy and Astrophysics, 6, 373–416.CrossRefGoogle Scholar
Giavalisco, M., Dickinson, M., Ferguson, H. C., et al. (2004). The rest-frame ultraviolet luminosity density of star-forming galaxies at redshifts z ≥ 3.5, Astrophysical Journal Letters, 600, L103–L106.CrossRefGoogle Scholar
Gilli, R., Comastri, A., & Hasinger, G. (2007). The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era, Astronomy and Astrophysics, 463, 79–96.CrossRefGoogle Scholar
Ginzburg, V. L. (1951). Cosmic rays as a source of Galactic radio-radiation, Doklady Akademiya Nauk SSSR, 76, 377–380.Google Scholar
Ginzburg, V. L., Sazonov, V. N., & Syrovatskii, S. I. (1968). Synchrotron radiation and its reabsorption, Soviet Physics Uspekhi, 11, 34.CrossRefGoogle Scholar
Ginzburg, V. L. & Syrovatskii, S. I. (1964). The Origin of Cosmic Rays. Oxford: Pergamon Press.CrossRefGoogle Scholar
Ginzburg, V. L. & Syrovatskii, S. I. (1965). Cosmic magnetobremsstrahlung (synchrotron radiation), Annual Review of Astronomy and Astrophysics, 3, 297–350.CrossRefGoogle Scholar
Ginzburg, V. L. & Syrovatskii, S. I. (1969). Developments in the theory of synchrotron radiation and its reabsorption, Annual Review of Astronomy and Astrophysics, 7, 375–420.CrossRefGoogle Scholar
Glazebrook, K., Abraham, R. G., McCarthy, P. J., et al. (2004). High abundance of massive galaxies 3–6 billion years after the Big Bang, Nature, 430, 181–184.CrossRefGoogle ScholarPubMed
Glazebrook, K., Ellis, R. S., Colless, M., et al. (1995). The morphological identification of the rapidly evolving population of faint galaxies, Monthly Notices of the Royal Astronomical Society, 275, L19–L22.CrossRefGoogle Scholar
Gold, T. (1968). Rotating neutron stars as the origin of pulsating radio sources, Nature, 218, 731–732.CrossRefGoogle Scholar
Goldreich, P. & Julian, W. H. (1969). Pulsar electrodynamics, Astrophysical Journal, 157, 869–880.CrossRefGoogle Scholar
Goodrich, R. W. & Osterbrock, D. E. (1983). MRK 744 and MRK 1066 – Two Seyfert galaxies with strong absorption-line spectra, Astrophyiscal Journal, 269, 416–422.CrossRefGoogle Scholar
Gould, R. J. (2005). Electromagnetic Processes. Princeton: Princeton University Press.Google Scholar
Gradshteyn, I. S. & Ryzhik, I. M. (1980). Tables of Integrals, Series and Products. New York: Dover.Google Scholar
Granot, J. (2008). Critical review of basic afterglow concepts, ArXiv e-prints 0811.1657.Google Scholar
Granot, J. & Sari, R. (2002). The shape of spectral breaks in gamma-ray burst afterglows, Astrophysical Journal, 568, 820–829.CrossRefGoogle Scholar
Green, D. A., Reynolds, S. P., Borkowski, K. J., et al. (2008). The radio expansion and brightening of the very young supernova remnant G1.9+0.3, Monthly Notices of the Royal Astronomical Society, 387, L54–L58.CrossRefGoogle Scholar
Greenhill, L. J., Henkel, C., Becker, R., et al. (1995a). Centripetal acceleration within the subparsec nuclear maser disk of NGC4258., Astronomy and Astrophysics, 304, 21–33.Google Scholar
Greenhill, L. J., Jiang, D. R., Moran, J. M., et al. (1995b). Detection of a subparsec diameter disk in the nucleus of NGC 4258, Astrophysical Journal, 440, 619–627.CrossRefGoogle Scholar
Greiner, J., Cuby, J. G., & McCaughrean, M. J. (2001). An unusually massive stellar black hole in the Galaxy, Nature, 414, 522–525.CrossRefGoogle ScholarPubMed
Greisen, K. (1966). End to the cosmic-ray spectrum?, Physical Review Letters, 16, 748–750.CrossRefGoogle Scholar
Griffin, R. F. (1985). The distributions of periods and amplitudes of late-type spectroscopic binaries, in Interacting Binaries, eds Eggleton, P. P. & Pringle, J. E., pp. 1–12, Dordercht: Reidel.Google Scholar
Gueth, F. & Guilloteau, S. (1999). The jet-driven molecular outflow of HH 211, Astronomy and Astrophysics, 343, 571–584.Google Scholar
Gugliucci, N. E., Taylor, G. B., Peck, A. B., et al. (2005). Dating COINS: kinematic ages for compact symmetric objects, Astrophysical Journal, 622, 136–148.CrossRefGoogle Scholar
Gull, S. F. (1975). The X-ray, optical and radio properties of young supernova remnants, Monthly Notices of the Royal Astronomical Society, 171, 263–278.CrossRefGoogle Scholar
Gull, S. F. & Northover, K. J. E. (1973). Bubble model of extragalactic radio sources, Nature, 244, 80–83.CrossRefGoogle Scholar
Gunn, J. E. (1978). The Friedmann models and optical observations in cosmology, in Observational Cosmology: 8th Advanced Course, Swiss Society of Astronomy and Astrophysics, Saas-Fee 1978, eds Maeder, A. Martinet, L., & Tammann, G., pp. 1–121. Geneva: Geneva Observatory Publications.Google Scholar
Gunn, J. E. & Ostriker, J. P. (1970). On the nature of pulsars. III. Analysis of observations, Astrophysical Journal, 160, 979–1002.CrossRefGoogle Scholar
Haberl, F. (2007). The magnificent seven: magnetic fields and surface temperature distributions, Astrophysics and Space Science, 308, 181–190.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Malcolm S. Longair, University of Cambridge
  • Book: High Energy Astrophysics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778346.026
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Malcolm S. Longair, University of Cambridge
  • Book: High Energy Astrophysics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778346.026
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Malcolm S. Longair, University of Cambridge
  • Book: High Energy Astrophysics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778346.026
Available formats
×