Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-29T10:18:08.446Z Has data issue: false hasContentIssue false

Chapter Twenty-Two - Applications to Chemically Reactive Flows and Combustion

from Part Five - Applications

Published online by Cambridge University Press:  05 June 2012

T. J. Chung
Affiliation:
University of Alabama, Huntsville
Get access

Summary

General

In this chapter, we examine computations for reactive flows in general with computational combustion in particular. In reactive flows, the conservation equations for chemical species are added to the Navier-Stokes system of equations. This addition also requires a modification of the energy equation. Furthermore, the sensible enthalpy is coupled with the chemical species, which contributes to the heat source and diffusion of species interacting with temperature. Chemical reactions in high-speed turbulent flows with high temperatures are of practical interest. They are involved in hypersonic aircraft and reentry vehicles. In this case, it is necessary that the vibrational and electronic energies be taken into account, in which the ionization of chemical species may be important. Thus, the chemically reactive flows and combustion require significant modifications of not only the governing equations but also the existing computational methods discussed in previous chapters.

In general, we are concerned with characterizing ordinary flame and detonation by different time scales. These scales range over many orders of magnitude. When reaction phenomena are modeled such that characteristic times of variation are shorter than the time step used, the equations describing such physical phenomena become numerically stiff with respect to convection and diffusion.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramzon, B.Sirignano, W. A. 1988
Al-Masseeh, W. A.Bradley, D.Gaskell, P. H.Lau, A. K. C. 1990 825
Argyris, J. A.Doltsinis, I. S.Fritz, H.Urban, J. 1991 An exploration of chemically reacting viscous hypersonic flowComp. Meth. Appl. Mech. Eng 89 85CrossRefGoogle Scholar
Bilger, R. W. 1980 Turbulent flows with non-premixed ReactantsLibby, P. A.Williams, F. A.Turbulent Reacting FlowsBerlinSpringer-Verlag65CrossRefGoogle Scholar
Bradley, D.Law, A. K. C. 1990 Pure and Applied Chemistry 62 803CrossRef
Bray, K. N. C. 1979 Seventeenth Symposium (International), The Combustion InstitutePittsburgh223Google Scholar
Brokaw, R. S. 1958 Approximate formulas for the viscosity and thermal conductivity of gas mixturesJ. Chem. Phys 29 391CrossRefGoogle Scholar
Candler, G. 1989
Chin, J. S.Lefebvre, A. H. 1983
Chung, T. J.Karr, G. R. 1980 Analysis of nonlinear chemically reactive flow characteristic of high energy laser systemsInt. J. Num. Meth. Eng 16 1CrossRefGoogle Scholar
Chung, T. J.Kim, Y. M.Sohn, J. L. 1987 Finite element analysis in combustion phenomenaInt. J. Num. Meth. Fl 7 989CrossRefGoogle Scholar
Chung, T. J. 1993 Recent advances in finite element analysis for laminar reacting flows in combustionChung, T. J.Taylor, Francis, Numerical Modeling in CombustionMoscow133Google Scholar
Chung, T. J. 1993 Chung, T. J.Numerical Modeling in CombustionMoscow375Google Scholar
Chung, T. J. 1997 A new computational approach with flowfield dependent variation algorithm for applications to supersonic combustionRoy, G.Frolov, S.Givi, P.Advanced Computation and Analysis of CombustionMoscowENAS Publishers466Google Scholar
Cook, A. W.Riley, J. J.Kosary, G. 1997 A laminar flamelet approach to subgrid-scale chemistry in turbulent flowsComb. Flame 109 332CrossRefGoogle Scholar
DesJardin, P. E.Frankel, S. H. 1998 Large eddy simulation of a nonpremixed reacting jet: Application and assessment of subgrid-scale combustion modelsPhys. Fl 10 2298CrossRefGoogle Scholar
Dopazo, C.O'Brien, E. E. 1973 Isochoric turbulent mixing of two rapidly reacting chemical species with chemical heat releasePhys. Fl 16 2075CrossRefGoogle Scholar
Drummond, J. P.Hussaini, M. Y.Zang, T. A. 1985
Evans, J. S.Schexnayder, C. J. 1980 Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flamesAIAA J 18 188CrossRefGoogle Scholar
Faeth, G. M. 1977 Current status of droplet and liquid combustionProg. Energy Comb. Sci 3 191CrossRefGoogle Scholar
Frankel, S. H.Madina, C. K.Givi, P. 1992 Modeling of the reactant conversion rate in a turbulent shear flowChem. Eng. Comm 113 197CrossRefGoogle Scholar
Frolov, S. M.Basevich, V. A.Neuhaus, M. G.Tatchl, R. 1997 A joint velocity-scalar PDF method for modeling premixed and nonpremixed combustionRoy, G.Frolov, S.Givi, P.Advanced Computation and Analysis of CombustionMoscowENAS Publishers537Google Scholar
Fureby, C. 1996 On subgrid scale modeling in large eddy simulations of compressible fluid flowPhys. Fl 8 1301CrossRefGoogle Scholar
Fureby, C.Moller, S. I. 1995 Large eddy simulation of reacting flows applied to bluff body stabilized flamesAIAA J. 33 2339CrossRefGoogle Scholar
Gardiner, W. C. 1984 Combustion ChemistrySpringer-VerlagCrossRef
Gear, C. W. 1971 Numerical Initial Value Problems in Ordinary Differential EquationsEnglewood Cliffs, NJPrentice-HallGoogle Scholar
Gibson, M. M.Launder, B. E. 1978 Group effects on pressure fluctuations in the atmospheric boundary layerJ. Fluid Mech 86 491CrossRefGoogle Scholar
Girimaji, S. S. 1991 Assumed β-PDF model for turbulent mixing: validation and extension to multiple scalar mixingComb. Sci. Tech 78 177CrossRefGoogle Scholar
Givi, P. 1993 Chung, T. J.Taylor, Francis, 409
Givi, P.Jou, W. H. 1988 Mixing and chemical reaction in a spatially developing mixing layerJ. Nonequil. Thermod 13CrossRefGoogle Scholar
Givi, P.Riley, J. J. 1992 Some current issues in the analysis of reacting shear layers: Computational challengesVoit, R.Major Research Topics in CombustionNew York558Google Scholar
Gordon, S.McBride, J. 1971
Hirschfelder, J. O.Curtis, C. F.Bird, R. 1954 Molecular Theory of Gases and LiquidsNew YorkWileyGoogle Scholar
Hornung, H. G. 1972 Non-equilibrium dissociating nitrogen flow over spheres and cylindersJ. Fl. Mech 53 149CrossRefGoogle Scholar
Hu, D. 1987
Hussaini, M. Y.Zang, T. A. 1987 Spectral methods in fluid dynamicsAnn. Rev. Fl. Mech 19 339CrossRefGoogle Scholar
Janicka, J.Kollmann, W. 1979 A two-variables formalism for the treatment of chemical reactions in turbulent H2-air diffusion flamesSeventeenth Symposium (International) on CombustionThe Combustion Institute421Google Scholar
Janicka, J.Kollmann, 1980
Khalil, E. E.Spalding, D. B.Whitelaw, J. H. 1975 The calculation of local flow properties in two-dimensional furnacesInt. J. Heat Mass Trans 18 775CrossRefGoogle Scholar
Kim, Y. M. 1987
Kim, Y. M.Chung, T. J. 1989 Finite element analysis of turbulent diffusion flamesAIAA J 27 330Google Scholar
Kim, Y. M.Chung, T. J. 1990
Kim, Y. M.Chung, T. J. 1991
Kollmann, W. 1990 The PDF approach to turbulent flowTheor. Comp. Fl. Dyn 1 249CrossRefGoogle Scholar
Korczak, K. Z.Hu, D. 1987
Launder, B. E.Spalding, D. B. 1974 The numerical computation of turbulent flowsComp. Meth. Appl. Meth. Eng 3 239Google Scholar
Launder, B. E.Reece, G. J.Rodi, W. 1975 Progress in the development of a Reynolds stress turbulence closureJ. Fluid Mech 86 537CrossRefGoogle Scholar
Lee, J. H. 1985 Nelson, H. F.3
Lee, S. K. 1987
Lee, S. K.Chung, T. J. 1989 Axisymmetric unsteady droplet vaporization and gas temperature distributionAIAA J 111 487Google Scholar
Lefebvre, A. H. 1989 Atomization and SprayWashington, DCHemisphereGoogle Scholar
Lockwood, F. C.Naguib, A. S. 1975 The prediction of the fluctuations in the properties of free, round-jet turbulent, diffusion flamesComb. Flame 24 109CrossRefGoogle Scholar
Martin, M. P.Candler, G. V. 1998 Effect of chemical reactions on decaying isotropic turbulencePhys. Fl 10 1715CrossRefGoogle Scholar
McMurtry, P. A.Givi, P. 1991 Spectral simulations of reacting turbulent flowsOran, E. S.Boris, J. P.Numerical Approaches to Combustion ModelingNew YorkAIAA257Google Scholar
Millikan, R. C.White, D. R. 1963 Systematics of vibrational relaxationJ. Chem. Phys 139 3209CrossRefGoogle Scholar
Moller, S. I.Lundgren, E.Fureby, C. 1996 Large eddy simulation of unsteady combustionTwenty-Sixth Symposium (International) on CombustionThe Combustion Institute241Google Scholar
Moon, S. Y. 1998
Moon, S. Y.Yoon, K. T.Chung, T. J. 1996 Numerical simulation of heat transfer in chemically reacting shock wave-turbulent boundary layer interactionsNum. Heat Trans 30 55CrossRefGoogle Scholar
Norris, J. W.Edwards, J. R. 1997
Park, C. 1990 Nonequilibrium Hypersonic AerothermodynamicsNew YorkWileyGoogle Scholar
Park, C.Yoon, S. 1991 Fully coupled implicit method for thermochemical nonequilibrium air at suborbital flight speedsJ. Spacecraft 28 31Google Scholar
Pope, S. B. 1985 PDF methods for turbulent reactive flowsProg. Energy Comb. Sci 11 119CrossRefGoogle Scholar
Pope, S. B. 1990 591
Pratt, D. T. 1983 83
Pratt, D. T.Wormeck, J. J. 1976
Radhakrishnan, K. 1984
Rogallo, R. S.Moin, P. 1984 Numerical simulation of turbulent flowsAnn. Rev. Fl. Mech 16 99CrossRefGoogle Scholar
Rogers, R. C.Chinitz, W. 1983 Using a global hydrogen-air combustion model in turbulent reacting flow calculationsAIAA J. 21 586CrossRefGoogle Scholar
Rogers, R. C.Schexnayder, C. J. 1981
Sirignano, W. A. 1993 Computational spray combustionChung, T. J.Numerical Modeling in CombustionWashingtonGoogle Scholar
Sirignano, W. A. 1999 Fluid Dynamics and Transport of Droplets and SpraysUKCambridge University PressCrossRefGoogle Scholar
Spalding, D. B. 1971
Warnats, J. 1984
Westbrook, C. K.Dryer, F. L. 1984 Chemical kinetic modeling of hydrocarbon combustionProg. Energy Comb. Sci 10 1CrossRefGoogle Scholar
Wilke, C. R. 1950 A viscosity equation for gas mixturesJ. Chem. Phys 18 517CrossRefGoogle Scholar
Yoon, C. S. 1992
Yoon, W. S. 1992
Yoon, W. S.Chung, T. J. 1991
Yoon, W. S.Chung, T. J. 1992
Yoon, W. S.Chung, , T. J. 1993
Yoon, W. S.Chung, , T. J. 1993
Young, T. R.Boris, J. P. 1977 A numerical technique of solving stiff ordinary differential equations associated with the chemical kinetics of reactive flow problemsJ. Phys. Chem 81 2424CrossRefGoogle Scholar
Zeleznik, F. J.McBride, B. J. 1984

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×