Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-26T04:59:13.784Z Has data issue: false hasContentIssue false

7 - Inherited bone marrow failure syndromes and acquired disorders associated with single peripheral blood cytopenia

Pure red cell aplasia, agranulocytosis, and thrombocytopenias

from Section 1 - General and non-neoplastic hematopathology

Published online by Cambridge University Press:  03 May 2011

Maria A. Proytcheva
Affiliation:
Northwestern University Feinberg School of Medicine
Maria A. Proytcheva
Affiliation:
Northwestern University Medical School, Illinois
Get access

Summary

Congenital anemias due to impaired red cell production

Congenital anemias are a heterogeneous group of rare disorders due to impaired red cell production, resulting from either pure red cell aplasias and lack of erythroid progenitors in the marrow, or from ineffective erythropoiesis, dyserythropoiesis, and an increased cell death (Table 7.1). Either pathogenic mechanism leads to a variable degree of anemia with a low reticulocyte count. The peripheral blood findings are non-specific, and the diagnosis requires a bone marrow evaluation and ancillary studies. Anemias due to hemoglobinopathy, nutritional deficiency, increased red cell destruction, or bone marrow metastases are discussed in other chapters.

Diamond–Blackfan anemia [Online Mendelian Inheritance in Man (OMIM) 105650]

Epidemiology and clinical presentation

Diamond–Blackfan anemia (DBA), also known as congenital hypoplastic anemia, is a clinically and genetically heterogeneous group of disorders manifested in early infancy with anemia and reticulocytopenia due to absolute erythroid hypoplasia in otherwise normocellular bone marrow (BM). DBA is the first and, so far, the only known disease of abnormal ribosome biogenesis. It is characterized by mutations at structural ribosomal proteins, which result in intrinsic disorders of erythropoiesis, congenital anomalies, and an increased predisposition to malignancies [1, 2].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gazda, HT, Sieff, CA. Recent insights into the pathogenesis of Diamond-Blackfan anaemia. British Journal of Haematology. 2006;135:149–157.CrossRefGoogle ScholarPubMed
Lipton, JM, Ellis, SR. Diamond-Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematology/Oncology Clinics of North America. 2009;23:261–282.CrossRefGoogle ScholarPubMed
Ball, SE, McGuckin, CP, Jenkins, G, Gordon-Smith, EC. Diamond-Blackfan anaemia in the U.K.: analysis of 80 cases from a 20-year birth cohort. British Journal of Haematology. 1996;94:645–653.CrossRefGoogle ScholarPubMed
Young, NS. Bone Marrow Failure Syndromes. Philadelphia, PA: WB Saunders; 2000.Google Scholar
Janov, AJ, Leong, T, Nathan, DG, Guinan, EC. Diamond-Blackfan anemia: natural history and sequelae of treatment. Medicine. 1996;75:77–87.CrossRefGoogle Scholar
Willig, T-NMD, Gazda, HMD, Sieff, CAMBB. Diamond-Blackfan anemia. Current Opinion in Hematology. 2000;7:85–94.CrossRefGoogle ScholarPubMed
Halperin, DS, Freedman, MH. Diamond-Blackfan anemia: etiology, pathophysiology, and treatment. American Journal of Pediatric Hematology/Oncology. 1989;11:380–394.Google ScholarPubMed
Lipton, JMM, Federman, NBA, Khabbaze, YMD, et al. Osteogenic sarcoma associated with Diamond-Blackfan anemia: a report from the Diamond-Blackfan Anemia Registry. Journal of Pediatric Hematology/Oncology. 2001;23:39–44.CrossRefGoogle ScholarPubMed
Glader, BE, Backer, K, Diamond, LK. Elevated erythrocyte adenosine deaminase activity in congenital hypoplastic anemia. New England Journal of Medicine. 1983;309:1486–1490.CrossRefGoogle ScholarPubMed
Willig, TN, Perignon, JL, Gustavsson, P, et al. High adenosine deaminase level among healthy probands of Diamond Blackfan anemia (DBA) cosegregates with the DBA gene region on chromosome 19q13. Blood. 1998;92:4422–4427.Google ScholarPubMed
Bessler, M, Mason, PJ, Link, DC, Wilson, DB. Inherited bone marrow failure syndromes. In Orkin, SH, Nathan, DG, Ginsburg, D, et al., eds. Nathan and Oski's Hematology of Infancy and Childhood (7th edn.). Philadelphia: Saunders/Elsevier; 2009, 307–395.Google Scholar
Dianzani, I, Loreni, F. Diamond-Blackfan anemia: a ribosomal puzzle. Haematologica. 2008;93:1601–1604.CrossRefGoogle ScholarPubMed
Vlachos, A, Ball, S, Dahl, N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. British Journal of Haematology. 2008;142:859–876.CrossRefGoogle ScholarPubMed
Dianzani, I, Loreni, F. Diamond- Blackfan anemia: a ribosomal puzzle. Haematologica. 2008;93:1601–1604.CrossRefGoogle ScholarPubMed
Brown, MKE, Young, MNS. Parvovirus B19 in human disease. Annual Review of Medicine. 1997;48:59–67.CrossRefGoogle ScholarPubMed
Kudoh, T, Yoto, Y, Suzuki, N, et al. Human Parvovirus B19-induced aplastic crisis in iron deficiency anemia. Acta Paediatrica Japonica. 1994;36:448–449.CrossRefGoogle ScholarPubMed
Krause, JR, Penchansky, L, Knisely, AS. Morphological diagnosis of Parvovirus B19 infection. A cytopathic effect easily recognized in air-dried, formalin-fixed bone marrow smears stained with hematoxylin-eosin or Wright-Giemsa. Archives of Pathology and Laboratory Medicine. 1992;116:178–180.Google ScholarPubMed
Morey, AL, O'Neill, HJ, Coyle, PV, Fleming, KA. Immunohistological detection of human Parvovirus B19 in formalin-fixed, paraffin-embedded tissues. Journal of Pathology. 1992;166:105–108.CrossRefGoogle ScholarPubMed
Liu, W, Ittmann, M, Liu, J, et al. Human Parvovirus B19 in bone marrows from adults with acquired immunodeficiency syndrome: a comparative study using in situ hybridization and immunohistochemistry. Human Pathology. 1997;28:760–766.CrossRefGoogle ScholarPubMed
Frickhofen, N, Chen, ZJ, Young, NS, et al. Parvovirus B19 as a cause of acquired chronic pure red cell aplasia. British Journal of Haematology. 1994;87:818–824.CrossRefGoogle ScholarPubMed
Gerrits, GP, Oostrom, CG, Vaan, GA, Bakkeren, JA. Transient erythroblastopenia of childhood. A review of 22 cases. European Journal of Pediatrics. 1984 142:266–270.CrossRefGoogle ScholarPubMed
Rogers, ZR, Bergstrom, SK, Amylon, MD, Buchanan, GR, Glader, BE. Reduced neutrophil counts in children with transient erythroblastopenia of childhood. Journal of Pediatrics. 1989;115:746–748.CrossRefGoogle ScholarPubMed
Cherrick, IMD, Karayalcin, GMD, Lanzkowsky, PMD. Transient erythroblastopenia of childhood: prospective study of fifty patients. American Journal of Pediatric Hematology/Oncology. 1994;16:320–324.Google ScholarPubMed
Freedman, MH. Pure red cell aplasia in childhood and adolescence: pathogenesis and approaches to diagnosis. British Journal of Haematology. 1993;85:246–253.CrossRefGoogle Scholar
Penchansky, L, Jordan, JA. Transient erythroblastopenia of childhood associated with human herpesvirus type 6, variant B. American Journal of Clinical Pathology. 1997;108:127–132.CrossRefGoogle ScholarPubMed
Skeppner, G, Kreuger, A, Elinder, G. Transient erythroblastopenia of childhood: prospective study of 10 patients with special reference to viral infections. Journal of Pediatric Hematology/Oncology. 2002;24:294–298.CrossRefGoogle ScholarPubMed
Rogers, BB, Rogers, ZR, Timmons, CF. Polymerase chain reaction amplification of archival material for Parvovirus B19 in children with transient erythroblastopenia of childhood. Pediatric Pathology & Laboratory Medicine. 1996;16:471–478.CrossRefGoogle ScholarPubMed
Shaw, J, Meeder, R. Transient erythroblastopenia of childhood in siblings: case report and review of the literature. Journal of Pediatric Hematology/Oncology. 2007;29:659–660.CrossRefGoogle ScholarPubMed
Heimpel, H. Congenital dyserythropoietic anemias: epidemiology, clinical significance, and progress in understanding their pathogenesis. Annals of Hematology. 2004;83:613–621.CrossRefGoogle ScholarPubMed
Heimpel, H, Wendt, F. Congenital dyserythropoietic anemia with karyorrhexis and multinuclearity of erythroblasts. Helvetica Medica Acta. 1968;34:103–115.Google ScholarPubMed
Wickramasinghe, SN, Wood, WG. Advances in the understanding of the congenital dyserythropoietic anaemias. British Journal of Haematology. 2005;131:431–446.CrossRefGoogle ScholarPubMed
Tamary, H, Dgany, O, Proust, A, et al. Clinical and molecular variability in congenital dyserythropoietic anaemia type I. British Journal of Haematology. 2005;130:628–634.CrossRefGoogle ScholarPubMed
Parez, N, Dommergues, M, Zupan, V, et al. Severe congenital dyserythropoietic anaemia type I: prenatal management, transfusion support and alpha-interferon therapy. British Journal of Haematology. 2000;110:420–423.CrossRefGoogle ScholarPubMed
Shalev, HMD, Kapelushnik, JMD, Moser, AMD, et al. A comprehensive study of the neonatal manifestations of congenital dyserythropoietic anemia type I. Journal of Pediatric Hematology/Oncology. 2004;26:746–748.CrossRefGoogle ScholarPubMed
Wickramasinghe, SN. Congenital dyserythropoietic anemias. Current Opinion in Hematology. 2000;7:71–78.CrossRefGoogle ScholarPubMed
Wickramasinghe, SN. Dyserythropoiesis and congenital dyserythropoietic anaemias. British Journal of Haematology. 1997;98:785–797.CrossRefGoogle ScholarPubMed
Dgany, O, Avidan, N, Delaunay, J, et al. Congenital dyserythropoietic anemia type I is caused by mutations in codanin-1. The American Journal of Human Genetics. 2002;71:1467–1474.CrossRefGoogle ScholarPubMed
Tamary, H, Shalmon, L, Shalev, H, et al. Localization of the gene for congenital dyserythropoietic anemia type I to a <1-cM interval on chromosome 15q15.1–15.3. American Journal of Human Genetics. 1998;62:1062–1069.CrossRefGoogle ScholarPubMed
Ahmed, MR, Chehal, A, Zahed, L, et al. Linkage and mutational analysis of the CDAN1 gene reveals genetic heterogeneity in congenital dyserythropoietic anemia type I. Blood. 2006;107:4968–4969.CrossRefGoogle ScholarPubMed
Heimpel, H, Anselstetter, V, Chrobak, L, et al. Congenital dyserythropoietic anemia type II: epidemiology, clinical appearance, and prognosis based on long-term observation. Blood. 2003;102:4576–4581.CrossRefGoogle ScholarPubMed
Fukuda, MN, Papayannopoulou, T, Gordon-Smith, EC, Rochant, H, Testa, U. Defect in glycosylation of erythrocyte membrane proteins in congenital dyserythropoietic anaemia type II (HEMPAS). British Journal of Haematology. 1984;56:55–68.CrossRefGoogle Scholar
Gasparini, P, Miraglia del Giudice, E, Delaunay, J, et al. Localization of the congenital dyserythropoietic anemia II locus to chromosome 20q11.2 by genomewide search. American Journal of Human Genetics. 1997;61:1112–1116.CrossRefGoogle ScholarPubMed
Denecke, J, Marquardt, T. Congenital dyserythropoietic anemia type II (CDAII/HEMPAS): Where are we now?Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2009;1792:915–920.CrossRefGoogle ScholarPubMed
Sandstrom, H, Wahlin, A. Congenital dyserythropoietic anemia type III. Haematologica. 2000;85:753–757.Google ScholarPubMed
Wickramasinghe, SN. Congenital dyserythropoietic anaemias: clinical features, haematological morphology and new biochemical data. Blood Reviews. 1998;12:178–200.CrossRefGoogle ScholarPubMed
Renella, R, Wood, WG. The congenital dyserythropoietic anemias. Hematology/ Oncology Clinics of North America. 2009;23:283–306.CrossRefGoogle ScholarPubMed
Reich, D, Nalls, MA, Kao, WHL, et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genetics. 2009;5:e1000360.CrossRefGoogle ScholarPubMed
Nalls, MA, Wilson, JG, Patterson, NJ, et al. Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies. American Journal of Human Genetics. 2008;82:81–87. Erratum appears in American Journal of Human Genetics. 2008;82:532.CrossRefGoogle ScholarPubMed
Schmutz, N, Henry, E, Jopling, J, Christensen, RD. Expected ranges for blood neutrophil concentrations of neonates: the Manroe and Mouzinho charts revisited. Journal of Perinatology. 2008;28:275–281.CrossRefGoogle ScholarPubMed
Hsieh, MM, Everhart, JE, Byrd-Holt, DD, Tisdale, JF, Rodgers, GP. Prevalence of neutropenia in the U.S. population: age, sex, smoking status, and ethnic differences. Annals of Internal Medicine. 2007;146:486–492.CrossRefGoogle ScholarPubMed
Boxer, , Newburger, PE. A molecular classification of congenital neutropenia syndromes. Pediatric Blood & Cancer. 2007;49:609–614.CrossRefGoogle ScholarPubMed
Berliner, N, Horwitz, M, Loughran, TP Jr. Congenital and acquired neutropenia. Hematology/the Education Program of the American Society of Hematology. 2004: 63–79.Google ScholarPubMed
Dinauer, MC, Newberger, PE. The phagocyte system and disorders of granulopoiesis and granulocyte function. In Orkin, SH, Nathan, DG, Ginsburg, D, et al., eds. Nathan and Oski's Hematology of Infancy and Childhood (7th edn.). Philadelphia, PA: Saunders/Elsevier; 2009, 1109–1217.Google Scholar
Kostmann, R. Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatrica. 1956: 1–78.Google ScholarPubMed
Dale, DC, Hammond, WP. Cyclic neutropenia: a clinical review. Blood Reviews. 1988;2:178–185.CrossRefGoogle ScholarPubMed
Welte, K, Zeidler, C. Severe congenital neutropenia. Hematology – Oncology Clinics of North America. 2009;23:307–320.CrossRefGoogle ScholarPubMed
Bellanne-Chantelot, C, Clauin, S, Leblanc, T, et al. Mutations in the ELA2 gene correlate with more severe expression of neutropenia: a study of 81 patients from the French Neutropenia Register. Blood. 2004;103:4119–4125.CrossRefGoogle ScholarPubMed
Ancliff, PJ, Gale, RE, Liesner, R, Hann, IM, Linch, DC. Mutations in the ELA2 gene encoding neutrophil elastase are present in most patients with sporadic severe congenital neutropenia but only in some patients with the familial form of the disease. Blood. 2001;98:2645–2650.CrossRefGoogle ScholarPubMed
Horwitz, MS, Duan, Z, Korkmaz, B, Lee, H-H, Mealiffe, ME, Salipante, SJ. Neutrophil elastase in cyclic and severe congenital neutropenia. Blood. 2007;109:1817–1824.CrossRefGoogle ScholarPubMed
Zeidler, C, Germeshausen, M, Klein, C, Welte, K. Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) mutations in severe congenital neutropenia. British Journal of Haematology. 2009;144:459–467.CrossRefGoogle ScholarPubMed
Berliner, N. Lessons from congenital neutropenia: 50 years of progress in understanding myelopoiesis. Blood. 2008;111:5427–5432.CrossRefGoogle ScholarPubMed
Xia, J, Link, DC. Severe congenital neutropenia and the unfolded protein response. Current Opinion in Hematology. 2008;15:1–7.CrossRefGoogle ScholarPubMed
Klein, C, Grudzien, M, Appaswamy, G, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nature Genetics. 2007;39:86–92.CrossRefGoogle Scholar
Schaffer AAa, Klein Cb. Genetic heterogeneity in severe congenital neutropenia: how many aberrant pathways can kill a neutrophil?Current Opinion in Allergy & Clinical Immunology. 2007;7:481–494.CrossRefGoogle Scholar
Ward, AC, van Aesch, YM, Gits, J, et al. Novel point mutation in the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor in a case of severe congenital neutropenia hyporesponsive to G-CSF treatment. The Journal of Experimental Medicine. 1999;190:497–508.CrossRefGoogle Scholar
Dale, DC, Cottle, TE, Fier, CJ, et al. Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. American Journal of Hematology. 2003;72:82–93.CrossRefGoogle ScholarPubMed
Freedman, MH, Bonilla, MA, Fier, C, et al. Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood. 2000;96:429–436.Google ScholarPubMed
Rosenberg, PS, Alter, BP, Bolyard, AA, et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood. 2006;107:4628–4635.CrossRefGoogle ScholarPubMed
Kalra, R, Dale, D, Freedman, M, et al. Monosomy 7 and activating RAS mutations accompany malignant transformation in patients with congenital neutropenia. Blood. 1995;86:4579–4586.Google ScholarPubMed
Aprikyan, AAG, Kutyavin, T, Stein, S, et al. Cellular and molecular abnormalities in severe congenital neutropenia predisposing to leukemia. Experimental Hematology. 2003;31:372–381.CrossRefGoogle Scholar
Rosenberg, PS, Alter, BP, Link, DC, et al. Neutrophil elastase mutations and risk of leukaemia in severe congenital neutropenia. British Journal of Haematology. 2008;140:210–213.Google ScholarPubMed
Roper, M, Parmley, RT, Crist, WM, Kelly, DR, Cooper, MD. Severe congenital leukopenia (reticular dysgenesis). Immunologic and morphologic characterizations of leukocytes. American Journal of Diseases of Children. 1985;139:832–835.CrossRefGoogle ScholarPubMed
Calle-Martin, O, Badell, I, Garcia, A, et al. B cells and monocytes are not developmentally affected in a case of reticular dysgenesis. Clinical & Experimental Immunology. 1997;110:392–396.CrossRefGoogle Scholar
Pannicke, U, Honig, M, Hess, I, et al. Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nature Genetics. 2009;41:101–105.CrossRefGoogle ScholarPubMed
Kaplan, J, Domenico, I, Ward, DM. Chediak-Higashi syndrome. Current Opinion in Hematology. 2008;15:22–29.CrossRefGoogle ScholarPubMed
Spritz, RA. Chediak-Higashi syndrome. In Ochs, HD, Smith, CIE, Puck, JM, eds. Primary Immunodeficiency Diseases: A Molecular and Genetic Approach. New York: Oxford University Press; 1999, 389–396.Google Scholar
Nagle, DL, Karim, MA, Woolf, EA, et al. Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome. Nature Genetics. 1996;14:307–311.CrossRefGoogle ScholarPubMed
Faigle, W, Raposo, G, Tenza, D, et al. Deficient peptide loading and MHC class II endosomal sorting in a human genetic immunodeficiency disease: the Chediak-Higashi syndrome. The Journal of Cell Biology. 1998;141:1121–1134.CrossRefGoogle Scholar
Cunningham, JM, Patnaik, MM, Hammerschmidt, , Vercellotti, GM. Historical perspective and clinical implications of the Pelger-Huet cell. American Journal of Hematology. 2009;84:116–119.CrossRefGoogle ScholarPubMed
Hoffmann, K, Dreger, CK, Olins, AL, et al. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly). Nature Genetics. 2002;31:410–414.CrossRefGoogle Scholar
Johnson, CA, Bass, DA, Trillo, AA, Snyder, MS, DeChatelet, LR. Functional and metabolic studies of polymorphonuclear leukocytes in the congenital Pelger-Huet anomaly. Blood. 1980;55:466–469.Google ScholarPubMed
Cohen, TV, Klarmann, KD, Sakchaisri, K, et al. The lamin B receptor under transcriptional control of C/EBPepsilon is required for morphological but not functional maturation of neutrophils. Human Molecular Genetics. 2008;17:2921–2933.CrossRefGoogle Scholar
Mohamed, ISI, Wynn, RJ, Cominsky, K, et al. White blood cell left shift in a neonate: a case of mistaken identity. Journal of Perinatology. 2006;26:378–380.CrossRefGoogle Scholar
Ganick, DJ, Sunder, T, Finley, JL. Severe hematologic toxicity of valproic acid. A report of four patients. American Journal of Pediatric Hematology/Oncology. 1990;12:80–85.CrossRefGoogle ScholarPubMed
Kennedy, GA, Kay, TD, Johnson, DW, et al. Neutrophil dysplasia characterised by a pseudo-Pelger-Huet anomaly occurring with the use of mycophenolate mofetil and ganciclovir following renal transplantation: a report of five cases. Pathology. 2002;34:263–266.CrossRefGoogle ScholarPubMed
Banerjee, R, Halil, O, Bain, BJ, Cummins, D, Banner, NR. Neutrophil dysplasia caused by mycophenolate mofetil. Transplantation. 2000;70:1608–1610.CrossRefGoogle ScholarPubMed
Kunishima, S, Saito, H. Congenital macrothrombocytopenias. Blood Reviews. 2006;20:111–121.CrossRefGoogle ScholarPubMed
Drachman, JG. Inherited thrombocytopenia: when a low platelet count does not mean ITP. Blood. 2004;103:390–398.CrossRefGoogle Scholar
Balduini, CL, Iolascon, A, Savoia, A. Inherited thrombocytopenias: from genes to therapy. Haematologica. 2002;87:860–880.Google Scholar
Kunishima, S, Kojima, T, Matsushita, T, et al. Mutations in the NMMHC-A gene cause autosomal dominant macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly/Sebastian syndrome). Blood. 2001;97:1147–1149.CrossRefGoogle Scholar
Peterson, LC, Rao, KV, Crosson, JT, White, JG. Fechtner syndrome – a variant of Alport's syndrome with leukocyte inclusions and macrothrombocytopenia. Blood. 1985;65:397–406.Google ScholarPubMed
Greinacher, A, Nieuwenhuis, HK, White, JG. Sebastian platelet syndrome: a new variant of hereditary macrothrombocytopenia with leukocyte inclusions. Blut. 1990;61:282–288.CrossRefGoogle ScholarPubMed
Kelley, MJ, Jawien, W, Ortel, TL, Korczak, JF. Mutation of MYH9, encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly. Nature Genetics. 2000;26:106–108.CrossRefGoogle ScholarPubMed
Epstein, CJ, Sahud, MA, Piel, CF, et al. Hereditary macrothrombocytopathia, nephritis and deafness. American Journal of Medicine. 1972;52:299–310.CrossRefGoogle ScholarPubMed
Kunishima, S, Matsushita, T, Kojima, T, et al. Immunofluorescence analysis of neutrophil non-muscle myosin heavy chain-A in MYH9 disorders: association of subcellular localization with MYH9 mutations. Laboratory Investigation. 2003;83:115–122.CrossRefGoogle Scholar
Lopez, JA, Andrews, RK, Afshar-Kharghan, V, Berndt, MC. Bernard-Soulier Syndrome. Blood. 1998;91:4397–4418.Google ScholarPubMed
Bader-Meunier, BMD, Proulle, VMD, Trichet, CMD, et al. Misdiagnosis of chronic thrombocytopenia in childhood. Journal of Pediatric Hematology/Oncology. 2003;25:548–552.CrossRefGoogle ScholarPubMed
Biner, B, Devecioglu, O, Demir, M. Pitfalls in the diagnosis of immune thrombocytopenic purpura in children: 4 case reports. Clinical and Applied Thrombosis/Hemostasis. 2007;13:329–333.CrossRefGoogle Scholar
Savoia, A, Balduini, CL, Savino, M, et al. Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous Bernard-Soulier syndrome. Blood. 2001;97:1330–1335.CrossRefGoogle ScholarPubMed
Nichols, KE, Crispino, JD, Poncz, M, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nature Genetics. 2000;24:266–270.CrossRefGoogle Scholar
Yu, C, Niakan, KK, Matsushita, M, Stamatoyannopoulos, G, Orkin, SH, Raskind, WH. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood. 2002;100:2040–2045.CrossRefGoogle ScholarPubMed
Freson, K, Devriendt, K, Matthijs, G, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood. 2001;98:85–92.CrossRefGoogle ScholarPubMed
Germeshausen, M, Ballmaier, M, Welte, K. MPL mutations in 23 patients suffering from congenital amegakaryocytic thrombocytopenia: the type of mutation predicts the course of the disease. Human Mutation. 2006;27:296.CrossRefGoogle ScholarPubMed
Ballmaier, M, Germeshausen, M, Schulze, H, et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood. 2001;97:139–146.CrossRefGoogle ScholarPubMed
King, S, Germeshausen, M, Strauss, G, Welte, K, Ballmaier, M. Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. British Journal of Haematology. 2005;131:636–644.CrossRefGoogle ScholarPubMed
Kaushansky, K. Thrombopoietin and hematopoietic stem cell development. Annals of the New York Academy of Sciences. 1999;872:314–319.CrossRefGoogle ScholarPubMed
Song W-J, Sullivan MG, Legare, RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nature Genetics. 1999;23:166–175.CrossRefGoogle ScholarPubMed
Michaud, J, Simpson, K, Escher, R, et al. Integrative analysis of RUNX1 downstream pathways and target genes. BMC Genomics. 2008;9:363.CrossRefGoogle ScholarPubMed
Lemahieu, V, Gastier, U, Francke, JM. Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes. Human Mutation. 1999;14:54–66.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Ochs, HD, Thrasher, AJ. The Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology. 2006;117:725–738.CrossRefGoogle ScholarPubMed
Parolini, O, Ressmann, G, Haas, OA, et al. X-linked Wiskott-Aldrich syndrome in a girl. New England Journal of Medicine. 1998;338:291–295.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×