Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-15T04:05:19.418Z Has data issue: false hasContentIssue false

10 - Impedance tuners and tuneable filters

Published online by Cambridge University Press:  05 February 2014

Arnaud Pothier
Affiliation:
Université de Limoges
Tauno Vähä-Heikkilä
Affiliation:
Valtion Teknillinen Tutkimuskeskus (VTT)
Stepan Lucyszyn
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Introduction

RF impedance tuners and tuneable filters are essential components in front-end architectures for communication systems operating up to several gigahertz. Because of the recent increase of communication standards (e.g. GSM, WLAN, Wi-Fi, WiMAX, etc.), it has become necessary to produce systems with advanced reconfigurable capabilities. These demands have triggered an important R&D effort for proposing novel approaches to synthesise electronically – or magnetically-reconfigurable RF tuners and filters. Several enabling technologies are available to make them tuneable, such as the use of (i) yttrium iron garnet (YIG) crystals; (ii) solid-state (varactors and switches); (iii) ferroelectric- or ferromagnetic-based components; and (iv) mechanical or MEMS devices. Depending on the final application, a pertinent technological choice is then generally made by taking into account compromises between several factors, such as system complexity, reconfigurability, speed, size and costs. Additional requirements also have to be considered, such as maximum tolerated losses, linearity, dc power consumption and RF signal power handling. In particular, trends in communication systems are mainly focused on compact, high-efficiency and high-Q-factor systems having low-signal-distortion capabilities.

With basic RF filter design, the waveguide or dielectric resonator technologies generally enable very selective and low-loss filtering, especially when high RF power capabilities are needed. However, these devices suffer from integration difficulties due to their large size and weight. In contrast, planar technologies (e.g. microstrip, stripline or CPW) benefit from their compactness and ease of integration, but at the cost of medium- to low-Q-factor performance. Alternative solutions that have been developed in the past few years for obtaining both filter design compactness and improved Q-factor are oriented towards the use of silicon bulk micromachining techniques for suspending the RF filters on thin membranes [1] or the implementation of acoustic wave resonator technologies [2]. Other intensively studied approaches include loss compensation methods based on MMIC negative resistance technologies [3], exhibiting very attractive RF performance, but at the expense of high dc power consumption. Impedance tuners have been the subject of similar technological developments, with the main objective being to synthesise larger impedance coverage.

Type
Chapter
Information
Advanced RF MEMS , pp. 271 - 306
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Katehi, L. P. B., Rebeiz, G. M., Weller, T. M., Drayton, R. F., Cheng, H. J. and Whitaker, J. F., “Micromachined circuits for millimeter – and sub-millimeter-wave applications”, IEEE Antennas Propag. Mag., vol. 35, no. 5, pp. 9–17, Oct. 1993CrossRefGoogle Scholar
Lakin, K. M., “A review of thin-film resonator technology”, IEEE Microw., vol. 4, no. 4, pp. 61–67, Dec. 2003CrossRefGoogle Scholar
Billonnet, L., Jarry, B., Sussman-Fort, S. E., Rius, E., Tanné, G., Person, C. and Toutain, S., “Recent advances in microwave active filter design. Part 2: Tuneable structures and frequency control techniques”, Int. J. RF Microw. Comput. Aided Eng., vol. 12, no. 2, pp. 159–76, Mar 2002CrossRefGoogle Scholar
Kantanen, M., Lahdes, M., Vähä-Heikkilä, T. and Tuovinen, J., “A wideband automated measurement system for on-wafer noise parameter measurements at 50–75 GHz”, IEEE Trans Microw. Theory Tech., vol. 51, no. 5, pp. 1489–95, 2003CrossRefGoogle Scholar
Vähä-Heikkilä, T., “MEMS tuning and matching circuits, and millimeter wave on-wafer measurements”, Doctoral Thesis, Helsinki University of Technology, 2006
Collin, R. E., Foundations for Microwave Engineering. New York: McGraw-Hill Book Company, 1966Google Scholar
Ludwig, R. and Bretchko, P., Circuit, RFDesign: Theory and Applications, Upper Saddle River, NJ: Prentice Hall, 2000Google Scholar
Pozar, D. M., Microwave Engineering, New York: John Wiley & Sons, 1998Google Scholar
Rebeiz, G. M., RF MEMS: Theory, Design, and Technology, New York: John Wiley & Sons, 2003CrossRefGoogle Scholar
Ponchak, G. E. and Katehi, L. P. B., “Open – and short-circuit terminated series stubs in finite-width coplanar waveguide on silicon”, IEEE Trans. Microw. Theory Tech., vol. 45, no. 6, pp. 970–6, 1997CrossRefGoogle Scholar
Hettak, K., Dib, N., Omar, A., Delisle, G. Y., Stubbs, M. and Toutain, S., “A useful new class of miniature CPW shunt stubs and its impact on millimeter-wave integrated circuits”, IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2340–9, 1999CrossRefGoogle Scholar
Hettak, K., Verver, C. J. and Stubbs, M. G., “Overlapping, multiple CPW stub structures for high density MMICs”, IEEE MTT-S Int. Microw. Symp. Digest, Phoenix, AZ, vol. 1, pp. 311–14, 2001Google Scholar
Kim, H.-T., Jung, S., Kang, K., Park, J.-H., Kim, Y.-K. and Kwon, Y., “Low-Loss analogue and digital micromachined impedance tuners at the Ka-band”, IEEE Trans. Microw. Theory Tech., vol. 49, pp. 2394–400, 2001Google Scholar
Bischof, W., “Variable impedance tuner for MMIC’s”, IEEE Micro. Guided Wave Lett., vol. 4, no. 6, pp. 172–4, 1994CrossRefGoogle Scholar
McIntosh, C. E., Pollard, R. D. and Miles, R. E., “Novel MMIC source-impedance tuners for on-wafer microwave noise-parameter measurements”, IEEE Trans. Microw. Theory Tech., vol. 47, no. 2, pp. 125–31, 1999CrossRefGoogle Scholar
Mingo, J. de, Valdovinos, A., Crespo, A., Navarro, D. and García, P., “An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system”, IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 489–97, 2004Google Scholar
Papapolymerou, J., Lange, K. L., Goldsmith, C. L., Malczewski, A. and Kleber, J., “Reconfigurable double-stub tuners using MEMS switches for intelligent RF front-ends”, IEEE Trans. Microw. Theory Tech., vol. 51, no.1, pp. 271–8, 2003CrossRefGoogle Scholar
Lu, Y., Peroulis, D., Mohammadi, S. and Katehi, L. P. B., “A MEMS reconfigurable matching network for a class AB amplifier”, IEEE Microw. Compon. Lett., vol. 13, no. 10, pp. 437–9, 2003Google Scholar
Qiao, D., Molfino, R., Lardizabal, S. M., Pillans, B., Asbeck, P. M. and Jerinic, G., “An intelligently controlled RF power amplifier with a reconfigurable MEMS-varactor tuner”, IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 1089–95, 2005CrossRefGoogle Scholar
Vähä-Heikkilä, T., Van Caekenberghe, K., Varis, J., Tuovinen, J. and Rebeiz, G. M., “RF MEMS impedance tuners for 6–24 GHz applications”, Int. J. RF Microw. Comput. Aided Eng., vol. 17, no. 3, pp. 265–78, 2006CrossRefGoogle Scholar
Vähä-Heikkilä, T., Varis, J., Tuovinen, J. and Rebeiz, G. M., “A 20–50 GHz RF MEMS single-stub impedance tuner”, IEEE Microw. Compon. Lett., vol. 15, no. 4, pp. 205–7, 2005CrossRefGoogle Scholar
Vähä-Heikkilä, T., Varis, J., Tuovinen, J. and Rebeiz, G. M., “A V-Band single-stub RF MEMS impedance tuner”, Proceedings of European Microwave Conference, Amsterdam, Netherlands, pp. 1301–4, 2004
Vähä-Heikkilä, T., Varis, J., Tuovinen, J. and Rebeiz, G. M., “W-Band RF MEMS double and triple-stub impedance tuners”, IEEE MTT-S Int. Microw. Symp. Digest, Long Beach, CA, pp. 923–6, 2005Google Scholar
Mercier, D., Orlianges, J.-C., Delage, T., Champeaux, C., Catherinot, A., Cros, D. and Blondy, P., “Millimeter-wave tune-all bandpass filters”, IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1175–81, Apr. 2004CrossRefGoogle Scholar
Shen, Q. and Barker, N. S., “Distributed MEMS tuneable matching network using minimal-contact RF MEMS varactors”, IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2646–58, 2006CrossRefGoogle Scholar
Vähä-Heikkilä, T. and Rebeiz, G. M., “A 4–18 GHz reconfigurable RF MEMS matching network for power amplifier applications”, Int. J. RF Microw. Comput. Aided Eng., vol. 14, no. 4, pp. 356–72, 2004CrossRefGoogle Scholar
Vähä-Heikkilä, T. and Rebeiz, G. M., “A 20–50 GHz reconfigurable matching network for power amplifier applications”, IEEE MTT-S Int. Microw. Symp. Digest, Forth Worth, TX, pp. 717–21, 2004Google Scholar
Vähä-Heikkilä, T. and Ylönen, M., “G-Band distributed microelectromechanical components based on CMOS compatible fabrication”, IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 720–8, 2008.CrossRefGoogle Scholar
Fouladi, S., Akhavan, A. and Mansour, R. R., “A novel reconfigurable impedance matching network using DGS and MEMS switches for millimeter-wave applications”, IEEE MTT-S Int. Microw. Symp. Digest, Atlanta, GA, pp. 145–8, 2008Google Scholar
Lakshminarayanan, B. and Weller, T., “Optimization and implementation of impedance-matched true-time-delay phase shifters on quartz substrate”, IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 335–42, 2007CrossRefGoogle Scholar
Barker, N. S. and Rebeiz, G. M., “Optimization of distributed MEMS transmission line phase shifters – U-band and W-band designs”, IEEE Trans. Microw. Theory Tech., vol. 48, no. 11, pp. 1957–66, 2000Google Scholar
Nieminen, H., Kankaanpää, J., Ermolov, V., Silanto, S. and Ryhänen, T., “RF MEMS for 0.8–2.5 GHz applications in mobile terminals”, MEMSWAVE 5th Workshop on MEMS for Millimeter Wave Communications, Uppsala, Sweden, pp. A42–A48, 2004Google Scholar
Fukada, A., Okazaki, H., Hirota, T. and Yamao, Y., “Novel 900MHz/1.9GHz dual-mode power amplifier employing MEMS switches for optimum matching”, IEEE Microw. Compon. Lett., vol. 14, no. 3, pp. 121–3, 2004CrossRefGoogle Scholar
de Graauw, A. J. M., Steeneken, P.G., Chanlo, C., Dijkhuis, J., Pramm, S., van Bezooijen, A., ten Dolle, H. K. J., van Straten, F. and Lok, P., “MEMS-based reconfigurable multi-band BiCMOS power amplifier”, Proceedings of the 2006 Bipolar/BiCMOS Circuits and Technology Meeting, pp. 1–4, 2006Google Scholar
Malmqvist, R., Gustafsson, A., Nilsson, T., Samuelsson, C., Ferrer, I., Vähä-Heikkilä, T., and Erickson, R., “RF MEMS and GaAs based reconfigurable RF front-end components for wide-band multi-functional phased arrays”, Proceedings of the 36th European Microwave Conference, Manchester, UK, pp. 1798–1801, 2006
DeGrasse, R. W., “Low-loss gyromagnetic coupling through single-crystal garnets”, J. Appl. Phys., vol. 30, pp. S155–S156, Feb. 1959CrossRefGoogle Scholar
Carter, P. S., “Side-wall-coupled, strip-transmission-line magnetically tuneable filters employing ferrimagnetic YIG resonators”, IEEE Trans. Microw. Theory Tech., vol. 13, no. 3, pp. 306–15, May 1965CrossRefGoogle Scholar
Kaurs, J. A. R., “A tuneable bandpass ring filter for rectangular dielectric waveguide integrated circuits”, IEEE Trans. Microw. Theory Tech., vol. 24, no. 11, pp. 875–6, Nov. 1976CrossRefGoogle Scholar
Presser, A., “High-speed, varactor-tuneable microwave filter element”, MTT-S Int. Microw. Symp. Digest, vol. 79, no. 1, pp. 416–18, Apr. 1979CrossRefGoogle Scholar
Hunter, I. C. and Rhodes, J. D., “Electronically tuneable microwave bandpass filters”, IEEE Trans. Microw. Theory Tech., vol. 30, no. 9, pp. 1354–60, Sep. 1982CrossRefGoogle Scholar
Shu, Y.-H., Navarro, J. A. and Chang, K., “Electronically switchable and tuneable coplanar waveguide-slotline band-pass filters”, IEEE Trans. Microw. Theory Tech., vol. 39, no. 3, pp. 548–54, Mar 1991CrossRefGoogle Scholar
Chandler, S. R., Hunter, I. C. and Gardiner, J. C., “Active varactor tuneable bandpass filters”, IEEE Microw. Guided Wave Lett., vol. 3, pp. 70–71, Mar. 1993CrossRefGoogle Scholar
Brown, A. R. and Rebeiz, G. M., “A varactor-tuned RF filter”, IEEE Trans. Microw. Theory Tech., vol. 48, pp. 1157–60, Jul. 2000CrossRefGoogle Scholar
Koochakzade, M. and Abbaspour-Tamijani, A., “Multi-scale tuneable filter covering a frequency range of 6.5:1”, MTT-S Int. Microw. Symp. Digest, pp. 1023–6, Jun. 2008Google Scholar
Darfeuille, S., Lintignat, J., Gomez-Garcia, R., Sassi, Z., Barelaud, B., Billonnet, L., Jarry, B., Marie, H. and Gamand, P., “Silicon-integrated differential bandpass filters based on recursive and channelized principles and methodology to compute their exact noise figure”, IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, Part 2, pp. 4381–96, Dec. 2006CrossRefGoogle Scholar
Nath, J., Ghosh, D., Maria, J.-P., Kingon, A. I., Fathelbab, W., Franzon, P. D. and Steer, M. B., “An electronically tuneable microstrip bandpass filter using thin-film barium-strontium-titanate (BST) varactors”, IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2707–12, Sep. 2005CrossRefGoogle Scholar
Nguyen, M.-T., Yan, W. D. and Horne, E. P. W., “Broadband tuneable filters using high Q passive tuneable ICs”, MTT-S Int. Microw. Symp. Digest, pp. 951–4, Jun. 2008Google Scholar
Yan, W. D. and Mansour, R. R., “Tuneable dielectric resonator bandpass filter with embedded MEMS tuning elements”, IEEE Trans. Microw. Theory Tech., vol. 55, no. 1, pp. 154–60, Jan. 2007CrossRefGoogle Scholar
Temes, G. C. and Mitra, S. K., Modern Filter Theory and Design, New York: Wiley, 1973Google Scholar
Rhodes, J. D., Theory of Electrical Filters, New York: Wiley, 1976Google Scholar
Matthaei, G., Young, L. and Jones, E. M. T., Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Norwood, MA: Artech House, 1980Google Scholar
Hong, J.-S. and Lancaster, M. J., Microstrip Filters for RF/Microwave Applications, New York: John Wiley & Sons, Inc., 2001CrossRefGoogle Scholar
Entesari, K, “Development of high performance 6–18 GHz tuneable/switchable RF MEMS filters and their system implications”, PhD Dissertation, University of Michigan, 2006
Palego, C., Pothier, A., Crunteanu, A., Chatras, M., Blondy, P., Champeaux, C., Tristant, P. and Catherinot, A., “A two-pole lumped-element programmable filter with MEMS pseudo-digital capacitor banks”, IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 729–35, Mar. 2008CrossRefGoogle Scholar
Young, R. M., Adam, J. D., Vale, C. R., Braggins, T. T., Krishnaswamy, S. V., Milton, C. E., Bever, D. W., Chorosinski, L. G., Chen, L.-S.; Crockett, D. E., Freidhoff, C. B., Talisa, S. H., Capelle, E., Tranchini, R., Fende, J. R., Lorthioir, J. M. and Tories, A. R., “Low-loss bandpass RF filter using MEMS capacitance switches to achieve a one-octave tuning range and independently variable bandwidth”, IEEE MTT-S Int. Microw. Symp. Digest, vol. 3, pp. 1781–4, Jun. 2003Google Scholar
Entesari, K., Obeidat, K., Brown, A. R. and Rebeiz, G. M., “A 25–75-MHz RF MEMS tuneable filter”, IEEE Trans. Microw. Theory Tech., vol. 55, no. 11, pp. 2399–405, Nov. 2007CrossRefGoogle Scholar
Entesari, K. and Rebeiz, G. M., “A differential 4 bit 6.5–10 GHz RF MEMS tuneable filter”, IEEE Trans. Microw. Theory Tech., vol. 53, no.3, pp. 1103–10, Mar. 2005CrossRefGoogle Scholar
Fourn, E., Quendo, C., Rius, E., Pothier, A., Blondy, P., Champeaux, C., Orlianges, J. C., Catherinot, A., Tanne, G., Person, C. and Huret, F., “Bandwidth and central frequency control on tuneable bandpass filter by using MEMS cantilevers”, IEEE MTT-S Int. Microw. Symp. Digest, vol. 1, pp. 523–6, Jun. 2003Google Scholar
Abbaspour-Tamijani, A., Dussopt, L. and Rebeiz, G. M., “Miniature and tuneable filters using MEMS capacitors”, IEEE Trans. Microw. Theory Tech., vol. 51, pp. 1878–85, Jul. 2003CrossRefGoogle Scholar
Pillans, B., Malczewski, A., Allison, R. and Brank, J., “6–15 GHz RF MEMS tuneable filters”, IEEE MTT-S Int. Microw. Symp. Digest, vol. 1, pp. 919–22, Jun. 2005Google Scholar
Kim, H. T., Park, J. H., Kim, Y. K. and Kwon, Y., “Low-loss and compact V-band MEMS-based analogue tuneable bandpass filters,” IEEE Microw. Compon. Lett., vol. 12, pp. 432–4, Nov. 2002Google Scholar
Kim, H. T., Park, J. H., Kim, Y. K. and Kwon, Y., “Millimeter-wave micromachined tuneable filters,” IEEE MTT-S Int. Microw. Symp. Digest, vol. 3, pp. 1235–8, Jun. 1999Google Scholar
Dussopt, L. and Rebeiz, G. M., “Intermodulation distortion and power handling in RF MEMS switches, varactors, and tuneable filters”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, Part 1, pp. 1247–56, Apr. 2003CrossRefGoogle Scholar
Reines, I. C., Goldsmith, C. L., Nordquist, C. D., Dyck, C. W., Kraus, G. M., Plut, T. A., Finnegan, P. S., Austin, F. IV and Sullivan, C. T., “A low loss RF MEMS Ku-band integrated switched filter bank”, IEEE Microw. Compon. Lett., vol. 15, no. 2 pp. 74–76, Feb. 2005CrossRefGoogle Scholar
Ocera, A., Farinelli, P., Mezzanotte, P., Sorrentino, R., Margesin, B. and Giacomozzi, F., “A novel MEMS-tunable hairpin line filter on silicon substrate”, 36th European Microwave Conference Digest, pp. 803–6, Sep. 2006
Siegel, C., Ziegler, V., Schönlinner, B., Prechtel, U. and Schumacher, H., “Very low complexity RF MEMS technology for wide range tuneable microwave filters”, 35th European Microwave Conference Digest, pp. 637–40, Oct. 2005
Fourn, E., Pothier, A., Champeaux, C., Tristant, P., Catherinot, A., Blondy, P., Tanné, G., Rius, E., Person, C. and Huret, F., “MEMS switchable interdigital coplanar filter”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 320–3, Jan. 2003CrossRefGoogle Scholar
Lakshminarayanan, B. and Weller, T., “Tuneable bandpass filter using distributed MEMS transmission lines”, IEEE MTT-S Int. Microw. Symp. Digest, vol. 3, pp. 1789–92, Jun. 2003Google Scholar
Peroulis, D., Pacheco, S., Sarabandi, K. and Katehi, L. P. B., “Tuneable lumped components with applications to reconfigurable MEMS filters”, IEEE MTT-S Int. Microw. Symp. Digest, pp. 341–4, May 2001Google Scholar
Palego, C., Pothier, A., Crunteanu, A. and Blondy, P., “Dual-band MEMS reconfigurable filter for a multisStandard radio front-end”, 38th European Microwave Conference Digest, Oct. 2008
Ong, C. Y. and Okoniewski, M., “Low loss switchable coupled resonator bandpass filter”, IEEE MTT-S Int. Microw. Symp. Digest, pp. 137–40, Jun. 2008
Park, J.-H., Lee, S., Kim, J.-M.; Kim, H.-T., Kwon, Y. and Kim, Y.-K., “Reconfigurable millimeter-wave filters using CPW-based periodic structures with novel multiple-contact MEMS switches”, J. Microelectromech. Syst., vol. 14, no. 3, pp. 456–63, Jun. 2005CrossRefGoogle Scholar
Park, S.-J., El-Tanani, M. A., Reines, I. and Rebeiz, G. M., “Low-loss 4–6-GHz tunable filter with 3-Bit high-Q orthogonal bias RF-MEMS capacitance network”, IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2348–55, Oct. 2008CrossRefGoogle Scholar
Pothier, A., Orlianges, J. C., Zheng, E., Champeaux, C., Catherinot, A., Cross, D., Blondy, P. and Papapolymerou, J., “Low loss 2-Bit bandpass filters using MEMS dc contact switches”, IEEE Trans. Microw. Theory Tech, vol. 53, pp. 354–60, Jan. 2005CrossRefGoogle Scholar
Nordquist, C. D., Muyshondt, A., Pack, M. V., Finnegan, P. S., Dyck, C. W., Reines, I. C., Kraus, G. M., Plut, T. A., Sloan, G. R., Goldsmith, C. L. and Sullivan, C. T., “An X-band to Ku-band RF MEMS switched coplanar strip filter”, IEEE Microw. Compon. Lett., vol. 14, no. 9, pp. 425–7, Sept. 2004CrossRefGoogle Scholar
Houssini, M., Pothier, A., Crunteanu, A. and Blondy, P., “A 2-pole digitally tuneable filter using local one bit varactors”, IEEE MTT-S Int. Microw. Symp. Digest, pp. 37–40, Jun. 2008Google Scholar
Entesari, K. and Rebeiz, G. M., “A 12–18-GHz three-pole RF MEMS tuneable filter”, IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp. 2566–71, Aug. 2005CrossRefGoogle Scholar
Kraus, G. M., Goldsmith, C. L., Nordquist, C. D., Dyck, C. W., Finnegan, P. S., Austin, F. IV; Muyshondt, A. and Sullivan, C. T., “A widely tuneable RF MEMS end-coupled filter”, IEEE MTT-S Int. Microw. Symp. Digest, pp. 429–32, Jun. 2004Google Scholar
Reines, I., Brown, A., El-Tanani, M., Grichener, A., Rebeiz, G. M., “1.6–2.4 GHz RF MEMS tuneable 3-pole suspended combline filter”, IEEE MTT-S Int. Microw. Symp. Digest, pp. 133–6, Jun. 2008Google Scholar
Brank, J., Yao, J., Eberly, M., Malczewski, A., Varian, K. and Goldsmith, C. L., “RF MEMS-based tuneable filters”, Int. J. RF Microw. Comput. Aided Eng., vol. 11, no. 5, pp. 276–84, 2001CrossRefGoogle Scholar
Lucyszyn, S., Miyaguchi, K., Jiang, H. W., Robertson, I. D., Fisher, G., Lord, A. and Choi, J.-Y., “Micromachined RF-coupled cantilever inverted-microstrip millimeter-wave filters”, J. Microelectromech. Syst., vol. 17, no. 3, pp. 767–76, Jun. 2008CrossRefGoogle Scholar
Park, S. J., Reines, I. and Rebeiz, G. M., “High-Q RF-MEMS tunable evanescent-mode cavity filter”, IEEE MTT-S Int. Microw. Symp. Digest, pp. 1145–8, Jun. 2009Google Scholar
Stefanini, R., Chatras, M., Pothier, A., Orlianges, J. C. and Blondy, P., “High Q tunable cavity using dielectric less RF-MEMS varactors” 39th European Microwave Conference Digest, Oct. 2009
Liu, X., Katehi, L. P. B., Chappell, W. J. and Peroulis, D., “A 3.4–6.2GHz continuously tunable electrostatic MEMS resonator with quality factor of 460–530”, IEEE MTT-S Int. Microw. Symp. Digest, pp. 1149–52, Jun. 2009Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×