Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T05:23:20.726Z Has data issue: false hasContentIssue false

10 - Experiments in cavity QED and with trapped ions

Published online by Cambridge University Press:  05 September 2012

Christopher Gerry
Affiliation:
Lehman College, City University of New York
Peter Knight
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

In this chapter, we discuss two more experimental realizations of quantum optical phenomena, namely the interaction of an effective two-level atom with a quantized electromagnetic field in a high Q microwave cavity, the subject usually referred to as cavity QED, or sometimes CQED, and in the quantized motion of a trapped ion. Strictly speaking, these experiments are not optical, but they do realize interactions of exactly the type that are of interest in quantum optics, namely the Jaynes–Cummings interaction between a two-level system (an atom) and a bosonic degree of freedom, a single-mode cavity field in the case of a microwave cavity, and a vibrational mode of the center-of-mass motion of a trapped ion, the quanta being phonons in this case. We shall begin with a description of the useful properties of the so-called Rydberg atoms that are used in the microwave CQED experiments, proceed to discuss some general considerations of the radiative behavior of atoms in cavities, the CQED realization of the Jaynes–Cummings model, and then discuss the use of the dispersive, highly off-resonant, version of the model to generate superpositions of coherent states, i.e. the Schrödinger cat states of the type discussed in Chapters 7 and 9 for traveling wave optical fields but this time for a microwave cavity field. Finally, we discuss the realization of the Jaynes–Cummings interaction in the vibrational motion of a trapped ion.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S. Haroche, in New Trends in Atomic Physics, G. Grynberg and R. Stora (editors) (Amsterdam: Elsevier, 1984), p. 193
Hulet, R. G. and Kleppner, D., Phys. Rev. Lett., 51 (1983), 1430CrossRef
Nussenzweig, P., Bernardot, F., Brune, M., Hare, J., Raimond, J. M., Haroche, S. and Gawlik, W., Phys. Rev. A, 48 (1993), 3991CrossRef
C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum Mechanics, volume 2 (New York: Wiley Interscience, 1977)
Bloch, F., Phys. Rev., 70 (1946), 460CrossRef
See L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (New York: Wiley Interscience, 1975) and (Mineola: Dover, 1987), chapter 2
Purcell, E. M., Phys. Rev., 69 (1946), 681CrossRef
Kleppner, D., Phys. Rev. Lett., 47 (1981), 233CrossRef
Hulet, R. G., Hilfer, E. S. and Kleppner, D., Phys. Rev. Lett., 55 (1985), 2137CrossRef
N. F. Ramsey, Rev. Mod. Phys., 62 (1990), 541; Molecular Beams (New York: Oxford University Press, 1985)
Kim, I. I., Romero, K. M. Fonseca, Horiguti, A. M., Davidovich, L., Nemes, M. C. and Toledo Piza, A. F. R., Phys. Rev. Lett., 82 (1999), 4737CrossRef
Rempe, G., Walther, H. and Klein, N., Phys. Rev. Lett., 58 (1987), 353CrossRef
Brune, M., Schmidt-Kaler, F., Maaili, A., Dreyer, J., Hagley, E., Raimond, J. M. and Haroche, S., Phys. Rev. Lett., 76 (1996), 1800CrossRef
Cirac, J. I. and Zoller, P., Phys. Rev. A., 50 (1994), R2799. See also S. J. D. Phoenix and S. M. Barnett, J. Mod. Opt., 40 (1993), 979; I. K. Kudryavtsev and P. L. Knight, J. Mod. Opt., 40 (1993), 1673; M. Freyberger, P. K. Aravind, M. A. Horne and A. Shimony, Phys. Rev. A, 53 (1996), 1232; A. Beige, W. J. Munro and P. L. Knight, Phys. Rev. A, 62 (2000), 052102CrossRef
Hagley, E., Maître, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J. M., and Haroche, S., Phys. Rev. Lett., 79 (1997), 1CrossRef
Davidovich, L., Brune, M., Raimond, J. M. and Haroche, S., Phys. Rev. A, 53 (1996), 1295CrossRef
Brune, M., Hagley, E., Dreyer, J., Maître, X., Maali, A., Wunderlich, C., Raimond, J. M. and Haroche, S., Phys. Rev. Lett., 77 (1996), 4887CrossRef
See the review articles by Grangier, P., Levensen, J. A. and Poizat, J.-P., Nature, 396 (1998), 537; V. B. Braginsky, V. B. Vorontsov and K. S. Thorne, Science, 209 (1980), 547. An example of an optical application can be found, for example, in F. X. Kärtner and H. A. Haus, Phys. Rev. A, 47 (1993), 4585CrossRef
Brune, M., Nussenzveig, P., Schmidt-Kaler, F., Bernardot, F., Raimond, J. M. and Haroche, S., Phys. Rev. Lett., 72 (1994), 3339CrossRef
See P. Lorrain, D. R. Corson and F. Lorrain, Fundamentals of Electromagnetic Phenomena (New York: W. H. Freeman, 2000), p. 57
Horvath, G. Sz. K., Thompson, R. C. and Knight, P. L., Contemp. Phys., 38 (1997), 25CrossRef
Meekhoff, D. M., Monroe, C., King, B. E., Itano, W. M. and Wineland, D. J., Phys. Rev. Lett., 76 (1996), 1796CrossRef
Monroe, C., Meekhoff, D. M., King, B. E. and Wineland, D. J., Science, 272 (1996), 1131CrossRef
Quang, T., Knight, P. L. and Bužek, V., Phys. Rev. A, 44 (1991), 6092CrossRef
Dicke, R. H., Phys. Rev., 93 (1954), 99. See also N. E. Rehler and J. E. Eberly, Phys. Rev. A, 3 (1971), 1735, and J. H. Eberly, Am. J. Phys., 40 (1972), 1374CrossRef
Tavis, M. and Cummings, F. W., Phys. Rev., 170 (1968), 379CrossRef
For an elementary account of the mapping of the atomic states onto angular momentum states see M. Sargent, III, M. O. Scully and W. E. Lamb, Jr., Laser Physics (Reading: Addison-Wesley, 1974), appendix G
Arrechi, F. T., Courtens, E., Gilmore, R. and Thomas, H., Phys. Rev. A, 6 (1972), 2211CrossRef
Radcliffe, J. M., J. Phys. A: Gen. Phys., 4 (1971), 313CrossRef
Barnett, S. M. and Knight, P. L., Phys. Rev. A., 33 (1986), 2444; R. R. Puri and G. S. Agarwal, Phys. Rev. A, 33 (1986), R3610 and Phys. Rev. A, 35 (1977), 3433CrossRef
T. F. Gallagher, Rydberg Atoms (Cambridge: Cambridge University Press, 1994)
J. P. Connerade, Highly Excited Atoms (Cambridge: Cambridge University Press, 1998)
Hinds, E. A., “Cavity Quantum Electrodynamics”, in Advances in Atomic, Molecular, and Optical Physics, 28 (1991), 237CrossRefGoogle Scholar
Meschede, D., “Radiating atoms in confined spaces: from spontaneous emission to micromasers”, Phys. Rep., 211 (1992), 201CrossRefGoogle Scholar
P. Meystre, “Cavity quantum optics and the quantum measurement process”, in Progress in Optics XXX, edited by E. Wolf (Amsterdam: Elsevier, 1992)
Raimond, J. M., Brune, M. and Haroche, S., “Manipulating quantum entanglement with atoms and photons”, Rev. Mod. Phys., 73 (2003), 565CrossRefGoogle Scholar
Haroche, S., “Entanglement experiments in cavity QED”, Fortschr. Phys., 51 (2003), 388CrossRefGoogle Scholar
P. Berman (editor) Cavity Quantum Electrodynamics (New York: Academic Press, 1994)
P. K. Ghosh, Ion Traps (Oxford: Oxford University Press, 1995)
Cirac, J. I., Parkins, A. S., Blatt, R. and Zoller, P., “Nonclassical states of motion in trapped ions”, in Advances in Atomic, Molecular, and Optical Physics, 37 (1996), 237CrossRefGoogle Scholar
Liebfried, D., Blatt, R., Monroe, C. and Wineland, D., “Quantum dynamics of single trapped ions”, Rev. Mod. Phys., 75 (2003), 281CrossRefGoogle Scholar
S. Haroche, “Cavity Quantum Electrodynamics”, in Fundamental Systems in Quantum Optics, Les Houches Session ⅬIII, edited by J. Dalibard, J. M. Raimond and J. Zinn-Justin (Amsterdam: Elsevier, 1992)
M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, I. V. Sokolov and E. D. Trifonov, Superradiance (Bristol: Institute of Physics, 1996)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×