Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-24T14:19:06.172Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

4 - The Equations of Motion for a System of Particles

Oliver M. O'Reilly
Affiliation:
University of California, Berkeley
Get access

Summary

Introduction

In this chapter, we establish Lagrange's equations for a system of particles by starting with the balances of linear momentum for each of the particles. Our derivation is based on the results presented in Chapter 15 of Synge and Griffith. We supplement their work with a discussion of constraints and potential energies. To examine the geometry inherent in Lagrange's equations of motion for the system of particles, we use the construction of a representative single particle by Casey. All the work presented in this chapter emphasizes the equivalence of Lagrange's equations of motion for a system of particles and the balances of linear momenta. For completeness, a brief discussion of the principle of virtual work, D'Alembert's principle, Gauss' principle of least constraint, and Hamilton's principle are also presented in Section 4.11. The chapter closes with a discussion of a canonical form of Lagrange's equations of motion in which time-independent integrable constraints are present.

For many specific problems, we can obtain Lagrange's equations by merely calculating the kinetic and potential energies of the system. This approach is used in most dynamics textbooks, and neither the construction of a single particle nor the components of force vectors are mentioned. Indeed, once we establish Lagrange's equations we can also ignore the explicit construction of the single particle. However, for many cases – which are not possible to treat using the approach adopted in most dynamics textbooks – we find that the use of Synge's and Griffith's representation of Lagrange's equations of motion allows us to tremendously increase the range of application of Lagrange's equations.

Type
Chapter
Information
Intermediate Dynamics for Engineers
A Unified Treatment of Newton-Euler and Lagrangian Mechanics
, pp. 103 - 133
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×