Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T10:37:26.649Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

9 - Games with incomplete information and common priors

Michael Maschler
Affiliation:
Hebrew University of Jerusalem
Eilon Solan
Affiliation:
Tel-Aviv University
Shmuel Zamir
Affiliation:
Hebrew University of Jerusalem
Get access

Summary

Chapter summary

In this chapter we study situations in which players do not have complete information on the environment they face. Due to the interactive nature of the game, modeling such situations involves not only the knowledge and beliefs of the players, but also the whole hierarchy of knowledge of each player, that is, knowledge of the knowledge of the other players, knowledge of the knowledge of the other players of the knowledge of other players, and so on. When the players have beliefs (i.e. probability distributions) on the unknown parameters that define the game, we similarly run into the need to consider infinite hierarchies of beliefs. The challenge of the theory was to incorporate these infinite hierarchies of knowledge and beliefs in a workable model.

We start by presenting the Aumann model of incomplete information, which models the knowledge of the players regarding the payoff-relevant parameters in the situation that they face. We define the knowledge operator, the concept of common knowledge, and characterize the collection of events that are common knowledge among the players.

We then add to the model the notion of belief and prove Aumann's agreement theorem: it cannot be common knowledge among the players that they disagree about the probability of a certain event.

An equivalent model to the Aumann model of incomplete information is a Harsanyi game with incomplete information. After presenting the game, we define two notions of equilibrium: the Nash equilibrium corresponding to the ex ante stage, before players receive information on the game they face, and the Bayesian equilibrium corresponding to the interim stage, after the players have received information.

Type
Chapter
Information
Game Theory , pp. 319 - 385
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×