Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-27T11:42:35.303Z Has data issue: false hasContentIssue false

8 - Time-dependent perturbation

Published online by Cambridge University Press:  05 June 2012

A. F. J. Levi
Affiliation:
University of Southern California
Get access

Summary

Introduction

Engineers who design transistors, lasers and other semiconductor components want to understand and control the cause of resistance to current flow so that they may better optimize device performance. A detailed microscopic understanding of electron motion from one part of a semiconductor to another requires the explicit calculation of electron scattering probability. One would like to know how to predict electron scattering from one state to another. In this chapter we will see how to do this using powerful quantummechanical techniques.

In addition to understanding electron motion in a semiconductor we also want to understand how to make devices that emit or absorb light. In Chapter 6 it was shown that a superposition of two harmonic oscillator eigenstates could give rise to dipole radiation and emission of a photon. The creation of a photon was only possible if a superposition state existed between a correct pair of eigenstates. This leads directly to the concept of rules determining pairs of eigenstates which can give rise to photon emission. Such selection rules are a useful tool to help us understand the emission and absorption of light by matter. However, the real challenge is to use what we know to make practical devices which operate using emission and absorption of photons. This usually requires imposing some control over atomic-scale physical processes which, of course, can only be understood using quantum mechanics.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Time-dependent perturbation
  • A. F. J. Levi, University of Southern California
  • Book: Applied Quantum Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511801914.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Time-dependent perturbation
  • A. F. J. Levi, University of Southern California
  • Book: Applied Quantum Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511801914.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Time-dependent perturbation
  • A. F. J. Levi, University of Southern California
  • Book: Applied Quantum Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511801914.011
Available formats
×