Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-28T20:14:07.221Z Has data issue: false hasContentIssue false

20 - Shor's factorization algorithm

Published online by Cambridge University Press:  05 June 2012

Emmanuel Desurvire
Affiliation:
Thales, France
Get access

Summary

This chapter describes what is generally considered to be one of the most important and historical contributions to the field of quantum computing, namely Shor's factorization algorithm. As its name indicates, this algorithm makes it possible to factorize numbers, which consists in their decomposition into a unique product of prime numbers. Other classical factorization algorithms previously developed have a complexity or computing time that increases exponentially with the number size, making the task intractable if not hopeless for large numbers. In contrast, Shor's algorithm is able to factor a number of any size in polynomial time, making the factorization problem tractable should a quantum computer ever be realized in the future. Since Shor's algorithm is based on several nonintuitive properties and other mathematical subtleties, this chapter presents a certain level of difficulty. With the previous chapters and tools readily assimilated, and some patience in going through the different preliminary steps required, such a difficulty is, however, quite surmountable. I have sought to make this description of Shor's algorithm as mathematically complete as possible and crack-free, while avoiding some academic considerations that may not be deemed necessary from any engineering perspective. Eventually, Shor's algorithm is described in only a few basic instructions. What is conceptually challenging is to grasp why it works so well, and also to feel comfortable with the fact that its implementation actually takes a fair amount of trial and error. The two preliminaries of Shor's algorithm are the phase estimation and the related order-finding algorithms.

Type
Chapter
Information
Classical and Quantum Information Theory
An Introduction for the Telecom Scientist
, pp. 399 - 430
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Singh, S., The Code Book (New York: Anchor Books, 1999)Google Scholar
Levy, S., Crypto (Harmondsworth: Penguin Books, 2001)Google Scholar
Kahn, D., The Codebreakers, the Story of Secret Writing (New York: Scribner, 1967)Google Scholar
Desurvire, E., Global Telecommunications, Broadband Access, Optical Components and Networks, and Cryptography (New York: J. Wiley and Sons, 2004)Google Scholar
Schneier, B., Applied Cryptography (New York: J. Wiley and Sons, 2006).Google Scholar
Desurvire, E., Global Telecommunications, Broadband Access, Optical Components and Networks, and Cryptography (New York: J. Wiley and Sons, 2004).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×