Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T18:02:47.352Z Has data issue: false hasContentIssue false

4 - Scalar quantization with memory

Published online by Cambridge University Press:  05 June 2012

Irina Bocharova
Affiliation:
St Petersburg State University
Get access

Summary

Multimedia data can be considered as data observed at the output of a source with memory. Sometimes we say that speech and images have considerable redundancy, meaning the statistical correlation or dependence between the samples of such sources which is referred to as memory in information theory literature. Scalar quantization does not exploit this redundancy or memory. As was shown in Chapter 3, scalar quantization for sources with memory provides a rate-distortion function which is rather far from the achievable rate-distortion function H(D) for a given source. Vector quantization could attain better rate-distortion performance but usually at the cost of significantly increasing computational complexity. Another approach leading to a better rate-distortion function and preserving rather low computational complexity combines linear processing with scalar quantization. First, we remove redundancy from the data and then apply scalar quantization to the output of the memoryless source. Outputs of the obtained memoryless source can be vector quantized with lower average distortions but with higher computational complexity. The two most important approaches of this variety are predictive coding and transform coding (Jayant and Noll 1984). The first approach is mainly used for speech compression and the second approach is applied to image, audio, and video coding. In this chapter, we will consider predictive coding systems which use time-domain operations in order to remove redundancy and thereby to reduce the bit-rate for given quantization error levels.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×