Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T17:16:11.315Z Has data issue: false hasContentIssue false

11 - PCP theorem and hardness of approximation: An introduction

from PART ONE - BASIC COMPLEXITY CLASSES

Published online by Cambridge University Press:  05 June 2012

Sanjeev Arora
Affiliation:
Princeton University, New Jersey
Boaz Barak
Affiliation:
Princeton University, New Jersey
Get access

Summary

[M]ost problem reductions do not create or preserve such gaps.… To create such a gap in the generic reduction (cf. Cook) … also seems doubtful. The intuitive reason is that computation is an inherently unstable, non-robust mathematical object, in the the sense that it can be turned from non-accepting to accepting by changes that would be insignificant in any reasonable metric.

– Papadimitriou and Yannakakis [PY88]

The contribution of this paper is two-fold. First, a connection is shown between approximating the size of the largest clique in a graph and multiprover interactive proofs. Second, an efficient multiprover interactive proof for NP languages is constructed, where the verifier uses very few random bits and communication bits.

– Feige, Goldwasser, Lovász, Safra, and Szegedy [FGL+91]

We give a new characterization of NP: it contains exactly those languages L for which membership proofs can be verified probabilistically in polynomial time using logarithmic number of random bits, and by reading a sub logarithmic number of bits from the proof.

– Arora and Safra [AS92]

This chapter describes the PCP Theorem, a surprising discovery of complexity theory, with many implications to algorithm design. Since the discovery of NP-completeness in 1972 researchers had mulled over the issue of whether we can efficiently compute approximate solutions to NP-hard optimization problems. They failed to design such approximation algorithms for most problems (see Section 11.1 for an introduction to approximation algorithms). They then tried to show that computing approximate solutions is also hard, but apart from a few isolated successes this effort also stalled.

Type
Chapter
Information
Computational Complexity
A Modern Approach
, pp. 237 - 256
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×