Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-22T17:12:56.222Z Has data issue: false hasContentIssue false

19 - Inference of rheological structure of Earth from mineral physics

Published online by Cambridge University Press:  05 June 2012

Shun-ichiro Karato
Affiliation:
Yale University, Connecticut
Get access

Summary

The current status of our understanding of the rheological structure of Earth's interior from a mineral physics point of view is reviewed. The rheological structure of the lithosphere–asthenosphere system is discussed in detail as well as the rheological structure of the deep mantle and the inner core. The inferred rheological structures depend critically on the temperature, water content, grain size and stress as well as the constitutive relations that control the dependence of rheological properties on these variables. These variables can be inferred for the shallow portions of Earth and some detailed analyses of the rheological structures there are presented including the regional variation in the rheological structure of the lithosphere. In contrast, temperature, water content and grain size are poorly known for Earth's deep interior. In addition, some of the important material parameters for deep Earth materials that determine the sensitivity of the rheological properties on these variables are not well constrained. Consequently, the inference of the rheological structure of Earth's deep interior can only be made with large uncertainties. In these cases, emphasis is placed on the basic framework by which rheological structures of Earth may be inferred from mineral physics rather than on specific models.

Keywords lithosphere, asthenosphere, partial melting, phase transformations, water, grain size.

Introduction

Similar to any other physical properties, the rheological properties in Earth and other terrestrial planets change both radially and laterally, and the manner in which the rheological properties change in space (and possibly in time) is highly dependent on the physical mechanisms of deformation.

Type
Chapter
Information
Deformation of Earth Materials
An Introduction to the Rheology of Solid Earth
, pp. 338 - 362
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×