Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-16T11:07:24.932Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

14 - Lift, Drag and the Effects of Manoeuvring

from Part 3 - Design of Engines for a New Fighter Aircraft

Nicholas Cumpsty
Affiliation:
University of Cambridge
Get access

Summary

INTRODUCTION

A fighter aircraft is required to be agile, which requires it to turn sharply, to accelerate rapidly and usually to travel fast. It is no surprise that accelerating rapidly or travelling fast require large amounts of thrust from the engine. What may be more of a surprise is that rapid changes in direction require high levels of engine thrust. The reason is that the drag of the aircraft rises approximately with the square of the lift coefficient and making rapid turns demands high lift from the wings. An aircraft normally banks in order to turn so that the resultant of the gravitation acceleration and the centripetal acceleration is normal to the plane of the wings, Fig. 14.1, and the force they produce is exactly balanced by the wing lift. It is normal to express the increase in acceleration in terms of the load factor, denoted by n: a load factor of unity corresponds to an acceleration g perpendicular to the wing, when the lift is the normal weight of the aircraft, whereas a load factor of 5 corresponds to an acceleration of 5g and the lift is five times the weight. For a modern fighter aircraft structures are designed to withstand the approximate limit on acceleration set by the human pilot and load factors can be as high as 9.

For the civil airliner the turns are normally so gentle that the lift on the wings is little more than the weight of the aircraft, and the size of the engine is normally fixed by requirements at the top of the climb.

Type
Chapter
Information
Jet Propulsion
A Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines
, pp. 189 - 200
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×