Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T19:28:04.384Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

5 - Bundles and Barrels

Mary Luckey
Affiliation:
San Francisco State University
Get access

Summary

The thermodynamic arguments discussed in the previous chapter make it clear that the TM segments of proteins will utilize secondary structure to satisfy the hydrogen bond needs of the peptide backbone. While a variety of combinations of secondary structures might be imagined in type III membrane proteins, all known protein structures cross the bilayer with either α-helices or β-strands, producing either helical bundles or β-barrels. This chapter looks at how understanding structure and function for a few proteins has provided the paradigms for these two known classes of integral membrane proteins.

HELICAL BUNDLES

Transmembrane (TM) α-helices have dominated the picture of membrane proteins, guided by early structural information on bacteriorhodopsin and by the first x-ray structure solved for membrane proteins, that of the photosynthetic reaction center (RC). The majority of integral membrane proteins whose high-resolution structures have been solved by x-ray crystallography exhibit the helical bundle motif (see examples in Chapters 9, 10, and 11). Helix–helix interactions have been analyzed in many of these, providing details of both tertiary and quaternary interactions. Identification of new integral membrane proteins in the proteome relies heavily on prediction of TM helices, as described in Chapter 6.

Bacteriorhodopsin

If a single protein dominated the thinking about structure, dynamics, and assembly of membrane proteins in the decades following 1970, that protein was bacteriorhodopsin (BR) from the purple membranes of the salt-loving bacterium Halobacter salinarum.

Type
Chapter
Information
Membrane Structural Biology
With Biochemical and Biophysical Foundations
, pp. 102 - 126
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haupts, U., Tittor, J., and Oesterhelt, D., Closing in on bacteriorhodopsin. Ann Rev Biophys Biomol Struct. 1999, 28:367–399.CrossRefGoogle ScholarPubMed
Lanyi, J. K., and Luecke, H., Bacteriorhodopsin. Curr Opin Struct Biol. 2001, 11:415–419.CrossRefGoogle ScholarPubMed
Lanyi, J. K., X-ray diffraction of bacteriorhodopsin photocycle intermediates. Mol Membr Biol. 2004, 21:143–150.CrossRefGoogle ScholarPubMed
Neutze, R., Pebay-Peyroula, E., Edman, K., Royant, A., Navarro, J., and Landau, E. M., Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta. 2002, 1565:144–167.CrossRefGoogle ScholarPubMed
Henderson, R., and Unwin, P. N. T., Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975, 257:28–32.CrossRefGoogle ScholarPubMed
Oesterhelt, D., and Stoeckenius, W., Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A. 1973, 70:2853–2857.CrossRefGoogle ScholarPubMed
Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., and Landau, E. M., X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997, 277:1676–1681.CrossRefGoogle ScholarPubMed
Winget, G. D., Kanner, N., and Racker, E., Formation of ATP by the adenosine triphosphatase complex from spinach chloroplasts reconstituted together with bacteriorhodopsin. Biochim Biophys Acta. 1977, 460:490–499.CrossRefGoogle ScholarPubMed
Deisenhofer, J., and Michel, H., Structures of bacterial photosynthetic reaction centers. Annu Rev Cell Biol. 1991, 7:1–23.CrossRefGoogle ScholarPubMed
Nogi, T., and Miki, K., Structural basis of bacterial photosynthetic reaction centers. J Biochem (Tokyo). 2001, 130:319–329.CrossRefGoogle ScholarPubMed
Vermeglio, A., and Joliot, P., The photosynthetic apparatus of Rhodobacter sphaeroides. Trends Microbiol. 1999, 7:435–440.CrossRefGoogle ScholarPubMed
Deisenhofer, J., Epp, O., Sinning, I., and Michel, H., Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1995, 246:429–457.CrossRefGoogle ScholarPubMed
Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H., Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature. 1985, 318:618–624.CrossRefGoogle ScholarPubMed
Buchanan, S. K., β-Barrel proteins from bacterial outer membranes: structure, function and refolding. Curr Opin Struct Biol. 1999, 9:455–461.CrossRefGoogle ScholarPubMed
Schulz, G. E., β-Barrel membrane proteins. Curr Opin Struct Biol. 2000, 10:443–447.CrossRefGoogle ScholarPubMed
Wimley, W. C., The versatile β-barrel membrane protein. Curr Opin Struct Biol. 2003, 13:404–411.CrossRefGoogle ScholarPubMed
Achouak, W., Heulin, T., and Pages, J.-M., Multiple facets of bacterial porins, FEMS Microbiol Lett. 2001, 199:1–7.CrossRefGoogle ScholarPubMed
Delcour, A. H., Solute uptake through general porins. Frontiers Biosci. 2003, 8:1055–1071.CrossRefGoogle ScholarPubMed
Dutzler, R., Wang, Y.-F., Rizkallah, P. J., Rosenbusch, J. P., and Schirmer, T., Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure. 1996, 4:127–134.CrossRefGoogle ScholarPubMed
Nikaido, H.Porins and specific channels of bacterial outer membranes. Mol Microbiol. 1992, 6:435–442.CrossRefGoogle ScholarPubMed
Schirmer, T., General and specific porins from bacterial outer membranes. J Struct Biol. 1998, 121:101–109.CrossRefGoogle ScholarPubMed
Cao, Z., and Klebba, P. E., Mechanisms of colicin binding and transport through outer membrane proteins. Biochimie. 2002, 84:399–412.CrossRefGoogle Scholar
Clarke, T. E., Tari, L. W., and Vogel, H. J., Structural biology of bacterial iron uptake systems. Curr Top Med Chem. 2001, 1:7–30.CrossRefGoogle ScholarPubMed
Ferguson, A. D., and Deisenhofer, J., TonB-dependent receptors – structural perspectives. Biochim Biophys Acta. 2002, 1565:318–332.CrossRefGoogle ScholarPubMed
Locher, K. P., Rees, B., Koepnik, R., Mitschler, A., Moulinier, L., Rosenbusch, J., and Moras, D., Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell. 1998, 95:771–776.CrossRefGoogle ScholarPubMed
Buchanan, S. K., Smith, B. S., Venkatramani, L., Xia, D., Esser, L., Palnitkar, M., Chakraborty, R., Helm, D., and Deisenhofer, J., Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol. 1999, 6:56–63.Google ScholarPubMed
Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R. A., Jansonius, J. N., and Rosenbusch, J. P., Crystal structures explain functional properties of two E. coli porins. Nature. 1992, 358:727–733.CrossRefGoogle ScholarPubMed
Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H., Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature. 1985, 318:618–624.CrossRefGoogle ScholarPubMed
Ferguson, A. D., Hofmann, E., Coulton, J. W., Diederiche, K., and Welte, W.. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science. 1998, 282:2215–2220.CrossRefGoogle ScholarPubMed
Forst, D., Welte, W., Wacker, T., and Diederichs, K., Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nat Struct Biol. 1998, 5:37–45.CrossRefGoogle ScholarPubMed
Kreusch, A., Neubüser, A., Schiltz, E., Weckesser, J., and Schulz, G. E., Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution. Protein Sci. 1994, 3:58–63.CrossRefGoogle ScholarPubMed
Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., and Landau, E. M., X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997, 277:1676–1681.CrossRefGoogle ScholarPubMed
Schirmer, T., Keller, T. A., Wang, Y.-F., and Rosenbusch, J. P., Structural basis for sugar translocation through maltoporin channels at 3.1Å resolution. Science. 1995, 267:512–514.CrossRefGoogle Scholar
Weiss, M. S., Kreusch, A., Schiltz, E., Nestel, U., Welte, W., Weckesser, J., and Schulz, G. E., The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution. FEBS Lett. 1991, 280:379–382.CrossRefGoogle ScholarPubMed
Haupts, U., Tittor, J., and Oesterhelt, D., Closing in on bacteriorhodopsin. Ann Rev Biophys Biomol Struct. 1999, 28:367–399.CrossRefGoogle ScholarPubMed
Lanyi, J. K., and Luecke, H., Bacteriorhodopsin. Curr Opin Struct Biol. 2001, 11:415–419.CrossRefGoogle ScholarPubMed
Lanyi, J. K., X-ray diffraction of bacteriorhodopsin photocycle intermediates. Mol Membr Biol. 2004, 21:143–150.CrossRefGoogle ScholarPubMed
Neutze, R., Pebay-Peyroula, E., Edman, K., Royant, A., Navarro, J., and Landau, E. M., Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta. 2002, 1565:144–167.CrossRefGoogle ScholarPubMed
Henderson, R., and Unwin, P. N. T., Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975, 257:28–32.CrossRefGoogle ScholarPubMed
Oesterhelt, D., and Stoeckenius, W., Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A. 1973, 70:2853–2857.CrossRefGoogle ScholarPubMed
Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., and Landau, E. M., X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997, 277:1676–1681.CrossRefGoogle ScholarPubMed
Winget, G. D., Kanner, N., and Racker, E., Formation of ATP by the adenosine triphosphatase complex from spinach chloroplasts reconstituted together with bacteriorhodopsin. Biochim Biophys Acta. 1977, 460:490–499.CrossRefGoogle ScholarPubMed
Deisenhofer, J., and Michel, H., Structures of bacterial photosynthetic reaction centers. Annu Rev Cell Biol. 1991, 7:1–23.CrossRefGoogle ScholarPubMed
Nogi, T., and Miki, K., Structural basis of bacterial photosynthetic reaction centers. J Biochem (Tokyo). 2001, 130:319–329.CrossRefGoogle ScholarPubMed
Vermeglio, A., and Joliot, P., The photosynthetic apparatus of Rhodobacter sphaeroides. Trends Microbiol. 1999, 7:435–440.CrossRefGoogle ScholarPubMed
Deisenhofer, J., Epp, O., Sinning, I., and Michel, H., Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1995, 246:429–457.CrossRefGoogle ScholarPubMed
Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H., Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature. 1985, 318:618–624.CrossRefGoogle ScholarPubMed
Buchanan, S. K., β-Barrel proteins from bacterial outer membranes: structure, function and refolding. Curr Opin Struct Biol. 1999, 9:455–461.CrossRefGoogle ScholarPubMed
Schulz, G. E., β-Barrel membrane proteins. Curr Opin Struct Biol. 2000, 10:443–447.CrossRefGoogle ScholarPubMed
Wimley, W. C., The versatile β-barrel membrane protein. Curr Opin Struct Biol. 2003, 13:404–411.CrossRefGoogle ScholarPubMed
Achouak, W., Heulin, T., and Pages, J.-M., Multiple facets of bacterial porins, FEMS Microbiol Lett. 2001, 199:1–7.CrossRefGoogle ScholarPubMed
Delcour, A. H., Solute uptake through general porins. Frontiers Biosci. 2003, 8:1055–1071.CrossRefGoogle ScholarPubMed
Dutzler, R., Wang, Y.-F., Rizkallah, P. J., Rosenbusch, J. P., and Schirmer, T., Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure. 1996, 4:127–134.CrossRefGoogle ScholarPubMed
Nikaido, H.Porins and specific channels of bacterial outer membranes. Mol Microbiol. 1992, 6:435–442.CrossRefGoogle ScholarPubMed
Schirmer, T., General and specific porins from bacterial outer membranes. J Struct Biol. 1998, 121:101–109.CrossRefGoogle ScholarPubMed
Cao, Z., and Klebba, P. E., Mechanisms of colicin binding and transport through outer membrane proteins. Biochimie. 2002, 84:399–412.CrossRefGoogle Scholar
Clarke, T. E., Tari, L. W., and Vogel, H. J., Structural biology of bacterial iron uptake systems. Curr Top Med Chem. 2001, 1:7–30.CrossRefGoogle ScholarPubMed
Ferguson, A. D., and Deisenhofer, J., TonB-dependent receptors – structural perspectives. Biochim Biophys Acta. 2002, 1565:318–332.CrossRefGoogle ScholarPubMed
Locher, K. P., Rees, B., Koepnik, R., Mitschler, A., Moulinier, L., Rosenbusch, J., and Moras, D., Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell. 1998, 95:771–776.CrossRefGoogle ScholarPubMed
Buchanan, S. K., Smith, B. S., Venkatramani, L., Xia, D., Esser, L., Palnitkar, M., Chakraborty, R., Helm, D., and Deisenhofer, J., Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol. 1999, 6:56–63.Google ScholarPubMed
Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R. A., Jansonius, J. N., and Rosenbusch, J. P., Crystal structures explain functional properties of two E. coli porins. Nature. 1992, 358:727–733.CrossRefGoogle ScholarPubMed
Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H., Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature. 1985, 318:618–624.CrossRefGoogle ScholarPubMed
Ferguson, A. D., Hofmann, E., Coulton, J. W., Diederiche, K., and Welte, W.. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science. 1998, 282:2215–2220.CrossRefGoogle ScholarPubMed
Forst, D., Welte, W., Wacker, T., and Diederichs, K., Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nat Struct Biol. 1998, 5:37–45.CrossRefGoogle ScholarPubMed
Kreusch, A., Neubüser, A., Schiltz, E., Weckesser, J., and Schulz, G. E., Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution. Protein Sci. 1994, 3:58–63.CrossRefGoogle ScholarPubMed
Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., and Landau, E. M., X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997, 277:1676–1681.CrossRefGoogle ScholarPubMed
Schirmer, T., Keller, T. A., Wang, Y.-F., and Rosenbusch, J. P., Structural basis for sugar translocation through maltoporin channels at 3.1Å resolution. Science. 1995, 267:512–514.CrossRefGoogle Scholar
Weiss, M. S., Kreusch, A., Schiltz, E., Nestel, U., Welte, W., Weckesser, J., and Schulz, G. E., The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution. FEBS Lett. 1991, 280:379–382.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bundles and Barrels
  • Mary Luckey, San Francisco State University
  • Book: Membrane Structural Biology
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511811098.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bundles and Barrels
  • Mary Luckey, San Francisco State University
  • Book: Membrane Structural Biology
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511811098.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bundles and Barrels
  • Mary Luckey, San Francisco State University
  • Book: Membrane Structural Biology
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511811098.006
Available formats
×