Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-07T21:57:20.337Z Has data issue: false hasContentIssue false

4 - An Introduction to Error-Correcting Codes

Published online by Cambridge University Press:  05 June 2012

Susan Loepp
Affiliation:
Williams College, Massachusetts
William K. Wootters
Affiliation:
Williams College, Massachusetts
Get access

Summary

In the preceding chapter we mentioned the inevitable errors that occur when one tries to send quantum signals over, say, an optical fiber, even when there is no eavesdropper. But errors in transmission are not a problem just for quantum cryptography. For this entire chapter we forget about sending quantum information and instead focus on simply transmitting ordinary data faithfully over some kind of channel. Moreover, we assume that the data either is not sensitive or has already been encrypted. Unfortunately, many methods for transmitting data are susceptible to outside influences that can cause errors. How do we protect information from these errors? Error-correcting codes provide a mathematical method of not only detecting these errors, but also correcting them. Nowadays error-correcting codes are ubiquitous; they are used, for example, in cell-phone transmissions and satellite links, in the representation of music on a compact disk, and even in the bar codes in grocery stores.

The story of modern error-correcting codes began with Claude Shannon's famous paper “A Mathematical Theory of Communication,” which was published in 1948. Shannon worked for Bell Labs where he specialized in finding solutions to problems that arose in telephone communication. Quite naturally, he started considering ways to correct errors that occurred when information was transmitted over phone lines. Richard Hamming, who also worked at Bell Labs on this problem, published a groundbreaking paper in 1950 on the subject.

Type
Chapter
Information
Protecting Information
From Classical Error Correction to Quantum Cryptography
, pp. 128 - 172
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×