Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T00:51:31.062Z Has data issue: false hasContentIssue false

15 - Lagrangian and Hamiltonian mechanics

Published online by Cambridge University Press:  05 June 2012

Herman J. C. Berendsen
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Introduction

Classical mechanics is not only an approximation of quantum mechanics, valid for heavy particles, but historically it also forms the basis on which quantum-mechanical notions are formed. We also need to be able to describe mechanics in generalized coordinates if we wish to treat constraints or introduce other ways to reduce the number of degrees of freedom. The basis for this is Lagrangian mechanics, from which the Hamiltonian description is derived. The latter is not only used in the Schrödinger equation, but forms also the framework in which (classical) statistical mechanics is developed. A background in Lagrangian and Hamiltonian mechanics is therefore required for many subjects treated in this book.

After the derivation of Lagrangian and Hamiltonian dynamics, we shall consider how constraints can be built in. The common type of constraint is a holonomic constraint that depends only on coordinates, such as a bond length constraint, or constraints between particles that make them behave as one rigid body. An example of a non-holonomic constraint is the total kinetic energy (to be kept at a constant value or at a prescribed time-dependent value).

We shall only give a concise review; for details the reader is referred to text books on classical mechanics, in particular to Landau and Lifschitz (1982) and to Goldstein et al. (2002).

There are several ways to introduce the principles of mechanics, leading to Newton's laws that express the equations of motion of a mechanical system.

Type
Chapter
Information
Simulating the Physical World
Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics
, pp. 397 - 422
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×