Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-08T18:23:38.449Z Has data issue: false hasContentIssue false

3 - Two-dimensional neuron models

Published online by Cambridge University Press:  05 June 2012

Wulfram Gerstner
Affiliation:
École Polytechnique Fédérale de Lausanne
Werner M. Kistler
Affiliation:
Erasmus Universiteit Rotterdam
Get access

Summary

The behavior of high-dimensional nonlinear differential equations is difficult to visualize – and even more difficult to analyze. Two-dimensional differential equations, however, can be studied in a transparent manner by means of a phase plane analysis. A reduction of the four-dimensional equation of Hodgkin and Huxley to a two-variable neuron model is thus highly desirable. In the first section of this chapter we exploit the temporal properties of the gating variables of the Hodgkin–Huxley model so as to approximate the four-dimensional differential equation by a two-dimensional one. Section 3.2 is devoted to the phase plane analysis of generic neuron models consisting of two coupled differential equations, one for the membrane potential and the other one for the so-called relaxation variable. One of the questions to which we will return repeatedly throughout this chapter is the problem of the firing threshold. Section 3.3 summarizes some results on threshold and excitability in two-dimensional models. As a first step, however, we have to go through the approximations that are necessary for a reduction of the Hodgkin–Huxley model to two dimensions.

Reduction to two dimensions

In this section we perform a systematic reduction of the four-dimensional Hodgkin–Huxley model to two dimensions. To do so, we have to eliminate two of the four variables. The essential ideas of the reduction can also be applied to detailed neuron models that may contain many different ion channels. In this case, more than two variables would have to be eliminated, but the procedure would be completely analogous (Kepler et al., 1992).

Type
Chapter
Information
Spiking Neuron Models
Single Neurons, Populations, Plasticity
, pp. 69 - 92
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×