Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-23T06:29:59.144Z Has data issue: false hasContentIssue false

19 - Applications of Ensemble Theory to Real Gases

Published online by Cambridge University Press:  05 June 2012

Normand M. Laurendeau
Affiliation:
Purdue University, Indiana
Get access

Summary

As indicated in Chapter 18, ensemble theory is especially germane when calculating thermodynamic properties for systems composed of dependent rather than independent particles. Potential applications include real gases, liquids, and polymers. In this chapter, we focus on the thermodynamic properties of nonideal gases. Our overall approach is to develop an equation of state using the grand canonical ensemble. From classical thermodynamics, equilibrium properties can always be determined by suitably operating on such equations of state. As shown later in this chapter, typical evaluations require an accurate model for the intermolecular forces underlying any macroscopic assembly. This requirement is endemic to all applications of ensemble theory, including those for liquids and polymers. As a matter of fact, by mastering the upcoming procedures necessary for the statistics of real gases, you should be prepared for many pertinent applications to other tightly-coupled thermodynamic systems.

The Behavior of Real Gases

As the density of a gas rises, its constituent particles interact more vigorously so that their characteristic intermolecular potential exercises a greater influence on macroscopic behavior. Accordingly, the gas becomes less ideal and more real; i.e., its particles eventually display greater contingency owing to enhanced intermolecular forces. This deviation from ideal behavior is reflected through a more complicated equation of state for real gases.

An equation of state, you recall, describes a functional relation among the pressure, specific volume, and temperature of a given substance.

Type
Chapter
Information
Statistical Thermodynamics
Fundamentals and Applications
, pp. 359 - 374
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×