Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-25T14:09:39.400Z Has data issue: false hasContentIssue false

14 - The egg and embryology

Published online by Cambridge University Press:  05 June 2012

R. F. Chapman
Affiliation:
University of Arizona
Get access

Summary

THE EGG

Insect eggs are typically large relative to the size of the females that produce them because they contain a great deal of yolk. It is generally believed that the eggs of Endopterygota contain less yolk and are smaller than those of Exopterygota (Anderson, 1972b). To some extent, this may reflect the types of ovariole they possess. For example, in two locust species which have panoistic ovarioles, each egg weighs about 0.5% of female weight; amongst insects with telotrophic ovarioles, the egg of Trialeurodes vaporarium is over 1% of the female weight, and that of Callosobruchus maculata (Coleoptera) 0.6%. By contrast, amongst insects with polytrophic ovarioles, comparable figures for Apis mellifera and Grammia geneura (Lepidoptera) are 0.07% and 0.11%, respectively.

Egg size is affected by factors other than the type of ovariole, however. Amongst Lepidoptera from temperate regions, species overwintering in the egg stage have larger eggs than species that overwinter in some other stage, and species feeding on woody plants have bigger eggs than those feeding on herbaceous plants (Reavey, 1992). Individual females of at least some butterflies lay smaller eggs as they grow older, and females of the cornborer moth, Ostrinia, lay smaller eggs if they do not receive adequate nutrition (Leahy & Andow, 1994). The parasitic Hymenoptera which lay their eggs in their hosts have very small eggs and this is also true amongst the Tachinidae (Diptera).

Insect eggs have a wide variety of forms. Commonly, as in Orthoptera and many Hymenoptera, they are sausage shaped (Fig. 14.10), but they may be conical, as in Pieris, or rounded, as in many moths and Heteroptera.

Type
Chapter
Information
The Insects
Structure and Function
, pp. 325 - 362
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×