Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-09T06:28:54.403Z Has data issue: false hasContentIssue false

6 - Stochastic properties

from Part II - The Universe after the first second

Published online by Cambridge University Press:  05 June 2012

David H. Lyth
Affiliation:
Lancaster University
Andrew R. Liddle
Affiliation:
University of Sussex
Get access

Summary

The time dependence of each perturbation is well defined, being determined by laws of physics. Viewed instead as a function of position at fixed time, the perturbations have random distributions. It is the statistical properties of these distribution that we wish to uncover via observation, and relate to fundamental physics models for the origin of perturbations. Those are usually referred to as stochastic properties.

The inherent randomness means that one shouldn't aim to predict things like the precise location of particular galaxies. Questions should refer to stochastic properties only. Don't ask ‘how far is it to the nearest large galaxy?’; instead ask ‘what is the typical separation between large galaxies?’. This randomness echoes simple quantum mechanics, e.g. one shouldn't hope to predict the precise position of a single particle in a closed box, but could compute the typical distance of the particle from its centre averaged over many such boxes. Indeed, we will see that in the inflationary cosmology the randomness of cosmological perturbations does have its origin in quantum uncertainty.

To describe the stochastic properties of the perturbations, one invokes the mathematical concept of a random field. In this chapter we describe the relevant aspects of that concept, without tying ourselves at this stage to any particular perturbation.

Random fields

Consider just one perturbation, evaluated at some instant, which we denote by g(x). We take g(x) to be associated with what is called a random field.

Type
Chapter
Information
The Primordial Density Perturbation
Cosmology, Inflation and the Origin of Structure
, pp. 85 - 102
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×