Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-25T22:36:44.266Z Has data issue: false hasContentIssue false

10 - Dynamic Plastic Buckling

Published online by Cambridge University Press:  05 June 2012

Norman Jones
Affiliation:
University of Liverpool
Get access

Summary

Introduction

The dynamic plastic progressive buckling of thin-walled tubes subjected to axial impact loads was examined in Chapter 9. The impact loads were applied sufficiently slowly so that neither the axial nor the lateral inertia effects of the tubes played a significant role during the response. The duration of the impact loading was much longer than the transit time of an elastic stress wave which propagates along the length of a tube, as shown in § 9.8.3. A tube was unable, therefore, to support a mean dynamic axial load which was larger than the corresponding static value when disregarding the influence of material strain rate sensitivity examined in Chapter 8. Thus, the deformed profile of a tube is similar in this case for both static buckling and dynamic progressive buckling and a quasi-static theoretical analysis gave satisfactory agreement with the corresponding experimental results, as discussed in Chapter 9.

If a thin-walled tube, or other structural member, is subjected to a sufficiently severe dynamic axial load, then structural inertia effects produce the phenomenon of dynamic plastic buckling. In this circumstance, the deformed shape of the structure may be quite different from the corresponding progressive buckling profile, as illustrated in Figure 10.1 for an axially loaded circular tube. The shell is wrinkled over the entire length when buckled dynamically, unlike the dynamic progressive buckling case with wrinkling confined to one end. This situation should be contrasted with Figure 10.2, which shows the dynamic plastic buckling of a rod subjected to an axial impact load. The wrinkling is confined to the impacted end in this case, whereas a lateral deformation profile with a low mode number would be likely to develop over the entire length for static axial loads.

Type
Chapter
Information
Structural Impact , pp. 425 - 478
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×