Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-23T22:19:15.286Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Weather Cycles
Real or Imaginary?
, pp. 291 - 307
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, M. A. &Latham, J. (1969). The electrofreezing of supercooled water drops. J. Meteorol. Soc. Japan, 47, 65–74CrossRefGoogle Scholar
Allan, R. J. (2000). ENSO and climatic variability in the past 150 years. In El Niño and the Southern Oscillation, ed. H. F. Diaz & V. Markgraf, pp. 3–55. Cambridge: Cambridge University Press
Alley, R. B., et al. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362, 527–9CrossRefGoogle Scholar
Ambaum, M. P. H., Hoskins, B. J. &Stephenson, D. B. (2001). Arctic Oscillation or North Atlantic Oscillation?J. Climate, 14, 3495–5072.0.CO;2>CrossRefGoogle Scholar
Ammann, C. M. &Naveau, P. (2003). Statistical analysis of tropical explosive volcanism occurrences over the last 6 centuries. Geophys. Res. Lett., 30, No. 5, 1210, doi: 10.1028/2002GLO16388CrossRefGoogle Scholar
Appenzeller, C., Stocker, T. F. &Anklin, M. (1998). North Atlantic Oscillation dynamics recorded in Greenland ice cores. Science, 282, 446–9CrossRefGoogle ScholarPubMed
Baillie, M. G. L. (1995). A Slice Through Time: Dendrochronology and Precision Dating. London: Batsford
Baldwin, M. P., et al. (2001). The quasi-biennial oscillation. Rev. Geophys., 32, 179–229CrossRefGoogle Scholar
Baldwin, M. P., et al. (2003). Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636–40CrossRefGoogle ScholarPubMed
Baliunas, S., Frick, P., Sokoloff, D. &Soon, W. (1997). Time scales and trends in the Central England Temperature data (1659–1990): a wavelet analysis. Geophys. Res., Lett., 24, 1351–4CrossRefGoogle Scholar
Barnola, J. M., et al. (1987). Vostok ice core provides 160 000 year record of atmospheric CO2. Nature, 329, 410–16CrossRefGoogle Scholar
Barnston, A. G. &Livezey, R. E. (1989). A closer look at the effect of the 11-year solar cycle and the quasi-biennial oscillation on Northern Hemisphere 700 mb height and extratropical North American surface temperature. J. Climate, 2, 1295–3132.0.CO;2>CrossRefGoogle Scholar
Bath, M. (1974). Spectral Analysis in Geophysics. Amsterdam: Elsevier Scientific Publishing Co
Battisti, D. S., &Hirst, A. C. (1989). Interannual variability in the tropical atmosphere–ocean system: influence of the basic state and ocean geometry. J. Atmos. Sci. 46, 1687–7122.0.CO;2>CrossRefGoogle Scholar
Behera, S. K. &Yamagata, T. (2001). Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28, 327–30CrossRefGoogle Scholar
Benzi, R., Parisi, G., Sutera, A. &Vulpiani, A. (1982). Stochastic resonance in climatic change. Tellus, 34, 10–16CrossRefGoogle Scholar
Berger, A. (1990). Relevance of medieval Egyptian and American dates to the study of climatic and radiocarbon variability. In The Earth's Climate and Variability of the Sun over Recent Millennia, ed. J. C. Pecker and S. K. Runcorn, pp. 119–29. London: Royal SocietyCrossRef
Berger, A. Melice, J. L. & van der Mersch, I. (1990). Evolutive spectral analysis of sunspot data over the past 300 years. In The Earth's Climate and Variability of the Sun over Recent Millennia, eds. J. C. Pecker and S. K. Runcorn, pp. 131–42. Royal Society, LondonCrossRef
Beveridge, W. H. (1921). Weather and harvest cycles. Econ. J., 31, 429–47Google Scholar
Biondi, F., Gershunov, A. &Cayan, D. R. (2001). North Pacific decadal climate variability since AD 1661. J. Climate, 14, 5–102.0.CO;2>CrossRefGoogle Scholar
Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–722.3.CO;2>CrossRefGoogle Scholar
Black, D. E., et al. (1999). Eight centuries of North Atlantic Ocean atmosphere variability. Science, 286, 1709–13CrossRefGoogle ScholarPubMed
Blunier, T. &Brook, E. J. (2001). Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109–12CrossRefGoogle ScholarPubMed
Bond, G. C. &Lotti, R. (1995). Iceberg discharges into the North Atlantic on millennial time scales during the last deglaciation. Science, 267, 1005–10CrossRefGoogle Scholar
Bond, G., et al. (1992). Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature, 360, 245–9CrossRefGoogle Scholar
Bond, G., et al. (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science, 278, 1257–65CrossRefGoogle Scholar
Bond, G., et al. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130–6CrossRefGoogle ScholarPubMed
Briffa, K. R., et al. (1990). A 1400-year tree-ring record of summer temperatures in Fennoscandia. Nature, 346, 434–9CrossRefGoogle Scholar
Briffa, K. R., et al. (1995). Unusual twentieth-century summer warmth in a 1000-year temperature record from Siberia. Nature, 376, 156–9CrossRefGoogle Scholar
Broecker, W. S. (1975). Climate change: are we on the brink of a pronounced global warming?Science, 189, 460–3CrossRefGoogle Scholar
Broecker, W. S. (1994). Massive iceberg discharges as triggers for global climate change. Nature, 372, 421–5CrossRefGoogle Scholar
Broecker, W. S. (1995). Chaotic climate. Sci. Am., 267, No. 11, 44–50Google Scholar
Broecker, W. S. (1997). Thermohaline circulation, the Achilles Heel of our climate system: will man-made CO2 upset the current balance?Science, 278, 1582–8CrossRefGoogle ScholarPubMed
Broecker, W. S. (1998). Paleocean circulation during the last deglaciation: a bipolar seesaw?Paleoceanography, 13, 119–21CrossRefGoogle Scholar
Burroughs, W. J. (1978). On running means and meteorological cycles. Weather, 33, 101–9CrossRefGoogle Scholar
Burroughs, W. J. (1982). Why do cold Decembers in England come at the end of each century?Weather, 37, 205–6CrossRefGoogle Scholar
Burroughs, W. J. (1997). Does the Weather Really Matter? Cambridge: Cambridge University Press
Campbell, I. D., et al. (2000). Millennial-scale rhythms in peatlands in the western interior of Canada and in the global carbon cycle. Quatern. Res., 54, 321–7CrossRefGoogle Scholar
Cavalieri, D., Gloersen, P., Parkinson, D. L., Cosimo, J. C. &Zwally, H. J. (1997). Observed hemispheric symmetry in global sea ice changes. Science, 278, 1104–6CrossRefGoogle Scholar
Chapman, M. J. &Shackleton, N. J. (2000). Evidence of 550-year and 1000-year cyclicities in North Atlantic circulation patterns during the Holocene. The Holocene, 10, 287–91CrossRefGoogle Scholar
Clegg, S. L. &Wigley, T. M. L. (1984). Periodicities in precipitation in Northeast China. Geophys. Res. Lett., 11, 1219CrossRefGoogle Scholar
CLIMAP Project Members (1976). The surface of the ice-age Earth. Science 191, 1131–7CrossRef
Cobb, K. M., Charles, C. D. &Hunter, D. E. (2001). A central tropical Pacific coral demonstrates Pacific, Indian and Atlantic decadal climate connections. Geophys. Res., Lett., 28, 2209–12CrossRefGoogle Scholar
Cobb, K. M., Charles, C. D., Cheng, H. &Edwards, R. L. (2003). El Niño/Southern Oscillation and tropical climate during the last millennium. Nature, 424, 271–6CrossRefGoogle ScholarPubMed
Cohen, T. J. &Lintz, P. R. (1974). Long term periodicities in the sunspot cycle. Nature, 250, 398–400CrossRefGoogle Scholar
Cohen, T. J. &Sweetser, E. I. (1975). The ‘spectra’ of the solar cycle data for Atlantic tropical cyclones. Nature, 256, 295–6CrossRefGoogle Scholar
Cole, J. E., Dunbar, R. B., McClanahan, T. R. &Muthiga, N. A. (2000). Tropical Pacific forcing of decadal SST variability in the western Indian Ocean over the past two centuries. Science, 287, 617–19CrossRefGoogle ScholarPubMed
Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A. &Funkhouser, G. (1995). The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. The Holocene, 5, 229–37CrossRefGoogle Scholar
Cook, E. R., Meko, D. M. &Stockton, C. W. (1997) A new assessment of possible solar and lunar forcing of the bidecadal drought rhythm in the western United States. J. Climate, 10, 1343–562.0.CO;2>CrossRefGoogle Scholar
Craddock, J. M. (1968). Statistics in the Computer Age. London: English University Press
Crowley, K. D., Duchan, C. E. &Rhi, J. (1986). Climate record in varved sediments in Eocene Green River formation. J. Geophys. Res., 91, 8637–48CrossRefGoogle Scholar
Currie, R. G. (1981). Evidence of 18.6 year MN signal in temperature and drought conditions in North America since AD 1800. J. Geophys. Res. 86, 11055–64CrossRefGoogle Scholar
Currie, R. G. (1987). In Climate History, Periodicity and Predictability, ed. M. R. Rampino, J. E. Sanders, W. S. Newman, & L. K. Konigsson, New York: Van Nostrand Reinhold
Currie, R. G. (1993). Luni-solar 18.6- and solar cycle 10- to 11-year signals in USA air temperature records. Int. J. Climatol., 13, 31–50CrossRefGoogle Scholar
Currie, R. G. &Brien, D. P. (1988). Periodic 18.6 year and cyclic 10- to 11-year signals in the Northest United States precipitation data. Int. J. Climatol., 8, 255–81CrossRefGoogle Scholar
Czaja, A. &Frankignoul, C. (2002). Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 31–502.0.CO;2>CrossRefGoogle Scholar
Dansgaard, W. & Oeschger, H. (1989). In The Environmental Record in Glaciers and Ice Sheets, ed. H. Oeschger, H. & Langway, C. C., pp. 287–318. Chichester, UK: Wiley
Dansgaard, W., Johnsen, S. J., Clausen, H. B. & Langway, C. C. (1973). Climatic record revealed by Camp Century ice core. In The Late Cenozoic Ice Ages, ed. K. K. Turekian, pp. 37–56. Yale: Yale University Press
Dansgaard, W., et al. (1993). Evidence of general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–20CrossRefGoogle Scholar
Geer, G. (1929). Solar registration by pre-Quaternary varve-shales. Geogr. Ann. 11, 242–6Google Scholar
Mare, W. K. (1997). Abrupt mid-twentieth-century decline in Antarctic sea-ice extent from whaling records. Nature, 389, 57–60CrossRefGoogle Scholar
Delworth, T. L. (1996). North Atlantic interannual variability in a coupled ocean–atmosphere model. J. Climate, 9, 2356–752.0.CO;2>CrossRefGoogle Scholar
Delworth, T. L. &Mann, M. E. (2000). Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dynam., 16, 661–76CrossRefGoogle Scholar
Delworth, T. L., Manabe, S. &Stouffer, R. J. (1997). Multidecadal climate variability in the Greenland Sea and surrounding regions: a coupled model simulation. Geophys. Res. Lett., 24, 257–60CrossRefGoogle Scholar
Denton, G. H. &Karlén, W. (1973). Holocene climate variations – their pattern and possible cause. Quatern. Res., 3, 155–205CrossRefGoogle Scholar
Diaz, H. F. & Markgraf, V. (eds.) (2000). El Niño and the Southern Oscillation. Cambridge: Cambridge University Press
Diaz, H. F., Hoerling, M. P. &Eischeid, J. K. (2001). ENSO variability: teleconnections and climate change. Int. J. Climatol., 21, 1845–62CrossRefGoogle Scholar
Dombros, M. & Gongbing, P. (1988). The Climate of China. New York, Heidelberg: Springer-Verlag
Dommenget, D. &Latif, M. (1999). Interannual to decadal variability in the tropical Atlantic. J. Climate, 13, 777–922.0.CO;2>CrossRefGoogle Scholar
Douglass, A. E. (1919). Climate Cycles and Tree Growth. Washington, DC: Carnegie Institute of Washington
Dunbar, R. B., Wellington, G. M., Colgan, M. W. &Glynn, P. W. (1994). Eastern Pacific sea-surface temperature since 1600 AD from the delta 18O record of climate variability in Galapagos corals. Paleoceanography, 9, 291–315CrossRefGoogle Scholar
Dyer, T. G. J. (1978). Persistence and monthly mean temperatures over Central England. Weather, 33, 141–8CrossRefGoogle Scholar
Eddy, J. A. (1976). The Maunder minimum. Science, 192, 1189–202CrossRefGoogle ScholarPubMed
Eddy, J. A., Gilliland, R. L. &Hoyt, D. V. (1982). Changes in the solar constant and climatic effects. Nature, 300, 689–93CrossRefGoogle Scholar
Eden, C. &Willebrand, J. (2001). Mechanism of interannual to decadal variability of the North Atlantic Circulation. J. Climate, 14, 2266–22802.0.CO;2>CrossRefGoogle Scholar
Egbert, G. D. &Ray, R. D. (2000). Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775–8CrossRefGoogle ScholarPubMed
Eichkorn, S.Wilhelm, S.Aufmhoff, H.Wohlfrom, K. H. &Arnold, F. (2002). Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere. Geophys. Res. Lett., 29, 10.1029/2002GLO15044CrossRefGoogle Scholar
Elsner, J. B. &Tsonis, A. A. (1991). Do bidecadal oscillations exist in the global temperature record?Nature, 353, 551–3CrossRefGoogle Scholar
Eltahir, E. A. B. &Wang, G. (1999). Nilometers, El Niño, and climate variability. Geophys. Res. Lett. 26, 489–92CrossRefGoogle Scholar
Elton, C. S. (1924). Periodic fluctuations in the number of animals: their causes and effects. Br. J. Exp. Biol. 2, 119–63Google Scholar
Emiliani, C. (1955). Pleistocene temperatures.J. Geology, 63, 538–78CrossRefGoogle Scholar
Enfield, D. B., Mestas-Nuñez, A. M. &Trimble, P. J. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S.Geophys. Res. Lett., 28, 2077–80CrossRefGoogle Scholar
Esper, J.Cook, E. R. &Schweingruber, F. H. (2002). Low frequency signals in long tree ring chronologies for reconstructing past temperature variability. Science, 295, 2250–3CrossRefGoogle ScholarPubMed
Evans, M. N., et al. (2001). Support for tropically-driven Pacific decadal variability based on paleoproxy evidence. Geophys. Res. Lett., 28, 3689–92CrossRefGoogle Scholar
Federov, A. V.et al. (2003). How predictable is El Niño?. Bull. Am. Meteorol. Soc., 84, 911–19CrossRefGoogle Scholar
Folland, C. K. &Salinger, M. J. (1997). Surface temperature trends and variations in New Zealand and the surrounding ocean. Int. J. Climatol., 15, 1195–218CrossRefGoogle Scholar
Foukal, P. &Lean, J. (1990). An empirical model of total solar irradiance variation between 1874 and 1986. Science, 247, 556–8CrossRefGoogle Scholar
Gagan, M. K., et al. (1998). Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific. Science, 279, 1014–18CrossRefGoogle ScholarPubMed
Gallego, G. &Cressi, P. (2001). Decadal variability of two oceans and an atmosphere. J. Climate, 14, 2815–322.0.CO;2>CrossRefGoogle Scholar
Ganopolski, A. &Rahmstorf, S. (2002). Abrupt glacial climate changes due to stochastic resonance. Phys. Rev. Lett., 88, 038501-1–4CrossRefGoogle ScholarPubMed
Giovanelli, R. (1984). Secrets of the Sun. Cambridge: Cambridge University Press
Gleissberg, W. (1958). The eighty-year sunspot cycle. J. Br. Astron. Assoc, 68, 148–52Google Scholar
Gong, D. &Wang, S. (1999). Definition of Antarctic Oscillation Index. Geophys. Res. Lett., 26, 459–62CrossRefGoogle Scholar
Gordon, A. H. (1976). The frequency distribution of changes in mean temperature from one month to the next. Weather, 31, 197–200CrossRefGoogle Scholar
Graham, N. E. &White, W. B. (1988). The El Niño cycle: a natural oscillator of the Pacific Ocean–atmosphere system. Science, 240, 1293–302CrossRefGoogle ScholarPubMed
Gray, W. M. (1990). Strong association between West African rainfall and US landfall of intense hurricanes. Science, 249, 1251–6CrossRefGoogle Scholar
Greenland Ice Core Project (GRIP) Members (1993). Climate instability during the last interglacial period recorded in the GRIP ice core. Nature, 364, 203–7CrossRef
Gribbin, J. (1982). Stand by for bad winters. New Sci., 28 October, 220–3Google Scholar
Grootes, P. M. &Stuiver, M. (1997). Oxygen 18/16 variability in Greenland snow and ice with 10-3 to 105 year time resolution. J. Geophys. Res., 102, 26 455–67CrossRefGoogle Scholar
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. &Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP 2 and GRIP Greenland ice cores. Nature, 366, 552–4CrossRefGoogle Scholar
Grove, J. M. (1988). The Little Ice Age. Methuen
Haigh, J. D. (1999). A GCM study of climate change in response to the 11-year solar cycle. Q. J. R. Meteorol. Soc., 125, 871–92CrossRefGoogle Scholar
Haigh, J. D. (2000). Solar variability and climate. Weather, 55, 399–405CrossRefGoogle Scholar
Hameed, S., et al. (1983). An analysis of periodicities in the 1470 to 1979 Beijing precipitation record. Geophys. R. Lett., 10, 436–9CrossRefGoogle Scholar
Harrison, G. (2002). Twentieth century secular decrease in the atmospheric potential gradient. Geophys. Res. Lett., 29, 10.1029/2002GL014878CrossRefGoogle Scholar
Hastenrath, S. (2002). Dipoles, temperature gradients, and tropical climate anomalies. Bull. Am. Meteorol. Soc., 83, 735–82.3.CO;2>CrossRefGoogle Scholar
Hastenrath, S. &Heller, L. (1977). Dynamics of climatic hazards in Northeast Brazil. Q. J. R. Meteorol. Soc., 103, 77–92CrossRefGoogle Scholar
Hays, J. D., Imbrie, J. &Shackleton, N. J. (1976). Variations in the Earth's orbit: pacemaker of the Ice Ages. Science, 194, 1121–32CrossRefGoogle ScholarPubMed
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quatern. Res., 29, 142–52CrossRefGoogle Scholar
Henderson-Sellers, A. (1992). Continental cloudiness changes this century. GeoJournal, 27, 255–62CrossRefGoogle Scholar
Hendon, H. H., Liebmann, B. &Glick, J. D. (1998). Oceanic Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 55, 88–1002.0.CO;2>CrossRefGoogle Scholar
Herbert, T. D., et al. (2001). Collapse of the California current during glacial maxima linked to climate change on land. Science, 293, 71–6CrossRefGoogle ScholarPubMed
Hibler, W. D. III &Johnson, S. J. (1972). The 20-year cycle in Greenland ice core records. Nature, 280, 429–34Google Scholar
Holton, J. R. &Lindzen, R. S. (1972). An up-dated theory of the equatorial quasi-biennial oscillation in the tropical stratosphere. J. Atmos. Sci., 29, 1076–10802.0.CO;2>CrossRefGoogle Scholar
Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269, 676–8CrossRefGoogle ScholarPubMed
Hurrell, J. W. (1996). Influences of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett. 23, 665–8CrossRefGoogle Scholar
Ichi-Kuma, K. (1990). A QBO in the intensity of the intraseasonal oscillation. Int. J. Climatol., 10, 263–78Google Scholar
Imbrie, J. &Imbrie, J. Z. (1980). Modelling the climatic response of orbital variations. Science, 207, 943–53CrossRefGoogle Scholar
Imbrie, J., et al. (1992). On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography, 7, 701–38CrossRefGoogle Scholar
Imbrie, J., et al. (1993a). On the structure and origin of major glaciation cycles. 2. The 100,000 year cycle. Paleoceanography, 8, 699–735CrossRefGoogle Scholar
Imbrie, J., Mix, A. C. &Martinson, D. G. (1993b). Milankovitch theory viewed from Devil's Hole. Nature, 363, 531–3CrossRefGoogle Scholar
IPCC (1990). Climate Change: The IPCC Scientific Assessment, ed. J. T. Houghton, G. J. Jenkins & G. G. Ephraums. Cambridge: Cambridge University Press
IPCC (1992). Climate Change 1992: The Supplementary Report to IPCC Scientific Assessment, ed., J. T. Houghton, B. A. Callander & S. K. Varney. Cambridge: Cambridge University Press
IPCC (1994). Climate Change 1994: Radiative Forcing of Climate and an Evaluation of the IPCC IS92 Emission Scenarios, ed. J. T. Houghton, L. G. Meira Filho, J. Bruce, Hoesung Lee, B. A. Callendar, E. Haites, N. Harris, & K. Maskell. Cambridge: Cambridge University Press
IPCC (1995). Climate Change 1995: The Science of Climate Change, ed. J. T. Houghton, L. G. Meira Filho, B. A. Callendar, N. Harris, A. Kattenberg & K. Maskell. Cambridge: Cambridge University Press
IPCC (2001). Climate Change 2001: The Scientific Basis, ed. J. T. Houghton, Y. Ding, D. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell & C. A Johnson. Cambridge: Cambridge University Press
Isdale, P. J., Stewart, B. J., Tickle, K. S. &Lough, J. M. (1998). Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in corals of the Great Barrier Reef, Australia. The Holocene, 8, 1–8CrossRefGoogle Scholar
James, I. N. &James, P. N. (1989). Ultra-low frequency variability in a simple atmospheric circulation model. Nature, 342, 53–5CrossRefGoogle Scholar
Jiang, N.Neelin, J. D. &Ghil, M. (1995). Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific. Climate Dynam., 12, 101–12CrossRefGoogle Scholar
Kalnay, E., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77, 437–712.0.CO;2>CrossRefGoogle Scholar
Kerr, R. A. (1988). Sunspot-weather link holding up. Science, 242, 1124CrossRefGoogle ScholarPubMed
Kiehl, J. T. &Trenberth, K. E. (1997). Earth's annual global mean energy budget. Bull. Am. Meteorol. Soc., 78, 197–2082.0.CO;2>CrossRefGoogle Scholar
Kniveton, D. R. &Todd, M. C. (2001). On the relationship of cosmic ray flux and precipitation. Geophys. Res. Lett., 28, 1527–30CrossRefGoogle Scholar
Kwok, R. &Comiso, J. (2002). Southern ocean climate and sea ice anomalies associated with the southern oscillation. J. Climate, 15, 487–5012.0.CO;2>CrossRefGoogle Scholar
Labitzke, K. (2001). The global signal of the 11-year sunspot cycle in the stratosphere: differences between solar maxima and solar minima. Meteorologische Zeitschrift, 10, 901–8CrossRefGoogle Scholar
Labitzke, K. & van Loon, H. (1990). Association between the 11-year solar cycle, the quasi-biennial oscillation and the atmosphere: a summary of recent work. In The Earth's Climate and Variability of the Sun over Recent Millennia, ed. J. C. Pecker and S. K. Runcorn, pp. 179–82. London: Royal SocietyCrossRef
Labitzke, K. & van Loon, H. (1999). The Stratosphere: Phenomena, History and Relevance. New York: Springer-Verlag
Lamb, H. H. (1972). Climate: Present, Past and Future. Volume 1. London: Methuen
Lamb, P. J. (1978). Large-scale tropical Atlantic circulation patterns associated with Subsaharan weather anomalies. Tellus, 30, 240–1CrossRefGoogle Scholar
Lambert, D. (1988). The Cambridge Guide to the Earth. Cambridge: Cambridge University Press
Landsberg, H. E., et al. (1963). Surface signs of the biennial atmospheric pulse. Mon. Wea. Rev., 91, 549–562.3.CO;2>CrossRefGoogle Scholar
Landsea, C. W., Gray, W. M., Mielke, P. W. Jr &Berry, J. K. (1994). Seasonal forecasting of Atlantic hurricane activity. Weather, 49, 273–84CrossRefGoogle Scholar
Latif, M. (2001). Tropical Pacific/Atlantic Ocean interactions at multi-decadal time scales. Geophys. Res. Lett., 28, 539–42CrossRefGoogle Scholar
Lau, K.-M., Kim, K- M. &Shen, S. S. P. (2002). Potential predictability of seasonal precipitation over the United States from canonical ensemble correlation predictions. Geophys. Res. Lett., 29, 1–4CrossRefGoogle Scholar
Lean, J. L. (2000). Evolution of the sun's spectral irradiance since the Maunder minimum. Geophys. Res. Lett., 27, 2425–28CrossRefGoogle Scholar
Lean, J. L. &Rind, D. (2001). Earth's response to a variable sun. Science, 292, 234–6CrossRefGoogle ScholarPubMed
Lean, J. L., White, O. R., Livingston, W. C. &Picone, J. M. (2001). Variability of a composite chromospheric irradiance index during the 11-year activity cycle and over longer time periods. J. Geophys. Res., 106, 10645–58CrossRefGoogle Scholar
Lejenas, H. (1995). Long term variations of atmospheric blocking in the northern hemisphere. J. Meteorol. Soc. Japan, 73, 79–89Google Scholar
Lejenas, H., &Okland, H. (1983) Characteristics of Northern Hemisphere blocking as determined from a long time series of observational data. Tellus, 35A, 350–62CrossRefGoogle Scholar
Roy Ladurie, E. &Baulant, M. (1980). Grape harvests from the fifteenth through the nineteenth centuries. J. Interdisciplin. Hist., 10, 839–49CrossRefGoogle Scholar
Lindstrom, J. (1997). Solar activity and hare dynamics: a cross-continental comparison. Am. Natural., 149, 765–75Google Scholar
Lindzen, R. S. (1987). On the development of the theory of the QBO. Bull. Am. Meteorol. Soc, 68, 329–372.0.CO;2>CrossRefGoogle Scholar
Linsley, B. K., Wellington, G. M. &Schrag, D. P. (2000). Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 AD. Science, 290, 1145–8CrossRefGoogle Scholar
Liu, H. S. &Chao, B. F. (1998). Wavelet spectral analysis of the Earth's orbital variations and palaeoclimatic cycles. J. Atmos. Sci., 55, 227–362.0.CO;2>CrossRefGoogle Scholar
Lockwood, M. &Stamper, R. (1999). Long term drift in the coronal source magnetic flux and total solar irradiance. Geophys. Res. Lett., 26, 2461–5CrossRefGoogle Scholar
Lockwood, M., Stamper, R. &Wild, M. N. (1999). A doubling of the Sun's coronal magnetic field during the last 100 years.Nature, 399, 437–9CrossRefGoogle Scholar
Lorenz, E. N. (1963). Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–412.0.CO;2>CrossRefGoogle Scholar
Lu, H.et al. (2000) Variability of East Asian winter monsoon in Quaternary climatic extremes in North China. Quatern. Res., 54, 321–7CrossRef
Lundin, R., Eliasson, L. & Murphree, J. S. (1991). The quiet time aurora. In Auroral Physics, ed. C.-I. Meng, M. J. Rycroft & L. A. Frank. Cambridge: Cambridge University Press
Luterbacher, J.et al. (2002). Extending the North Atlantic Oscillation reconstructions back to 1500. Atmos. Sci. Lett., 2, 114–24CrossRefGoogle Scholar
Madden, R. A. &Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–82.0.CO;2>CrossRefGoogle Scholar
Madden, R. A. (1972). Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–232.0.CO;2>CrossRefGoogle Scholar
Madden, R. A. (1994). Observations of the 40–50 day tropical oscillation: a review. Mon. Wea. Rev., 122, 814–372.0.CO;2>CrossRefGoogle Scholar
Manabe, S. &Stouffer, R. J. (1988). Two stable equilibria of a coupled ocean-atmosphere model. J. Climate, 1, 841–662.0.CO;2>CrossRefGoogle Scholar
Manley, G. (1974). Central England temperatures: monthly means 1659 to 1973. Q. J. R. Meteorol. Soc., 100, 389–405CrossRefGoogle Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., &Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc., 78, 1069–792.0.CO;2>CrossRefGoogle Scholar
Marcus, P. S., Sommeria, J., Meyers, S. D. &Swinney, H. L. (1990). Models of the Great Red Spot, Nature, 343, 517–18CrossRefGoogle Scholar
Markson, R. (1978). Solar modification of atmospheric electrification and possible implications for the Sun–weather relationship. Nature, 244, 197–200Google Scholar
Marshall, J., et al. (2001). North Atlantic climate variability: phenomena, impacts and mechanisms, Int. J. Climatol., 21, 1863–98CrossRefGoogle Scholar
Martinson, D. G., et al. (1987). Age dating and the orbital theory of ice ages: development of a high-resolution 0 to 300,000 years chronostratigraphy. Quatern. Res., 27, 1–29CrossRefGoogle Scholar
Mason, B. J. (1976). Towards the understanding and prediction of climatic variations. Q. J. R. Meteorol. Soc., 102, 478–98CrossRefGoogle Scholar
Maunder, E. W. (1922). The prolonged sunspot minimum 1645–1715. J. Br. Astron. Assoc., 32, 140–5Google Scholar
May, B. R. &Hitch, T. J. (1989). Periodic variations in extreme hourly rainfall in the UK. Meteorol. Mag., 118, 45–50Google Scholar
McDermott, F., Mattey, D. P. &Hawkesworth, C. (2001). Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O Record from SW Ireland. Science, 294, 1328–31CrossRefGoogle ScholarPubMed
McPhaden, M. J., Delcroix, T., Hanawa, K., Kuroda, Y., Meyers, G. Picaut, J. & Swenson, M. (2001). The El Niño/Southern Oscillation (ENSO) observing system. In Observing the Ocean in the 21st Century, pp. 231–46. Melbourne, Australia: Australian Bureau of Meteorology
Mitchell, J. M. (1990) Climatic variability: past, present & future. Climatic Change, 16, 231–46CrossRefGoogle Scholar
Mitchell, J. M., Stockton, C. W. & Meko, D. M. (1979). Evidence of a 22-year rhythm of drought in the Western United States related to the Hale Solar Cycle since the 17th century. In Solar–Terrestrial Influences on Weather and Climate, ed. B. M. McCormac & T. A. Seliga, pp. 125–43. D. Reidel Publishing CoCrossRef
Mitton, S. M. (ed.) (1977). Cambridge Encyclopedia of Astronomy. Cambridge: Cambridge University Press
Mock, S. J. &Hibler, W. D. III (1976). The 20-year oscillation in American temperature records. Nature, 261, 484–6CrossRefGoogle Scholar
Montgomery, R. B. (1940). Report on the work of G. T. Walker. Mon. Wea. Rev., Supp. No. 39, 1–22Google Scholar
Muller, R. A. &MacDonald, G. J. (1997). Glacial cycles and astronomical forcing. Science, 277, 215–18CrossRefGoogle Scholar
Namias, J. (1985). Some empirical evidence of influence of snow cover on temperature and precipitation. Mon. Wea. Rev., 113, 1542–532.0.CO;2>CrossRefGoogle Scholar
Neff, U., et al. (2001). Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature, 411, 290–3CrossRefGoogle ScholarPubMed
Neftel, A., Oeschger, H. &Suess, H. E. (1981). Secular non-random variations of cosmogenic carbon-14 in the terrestrial atmosphere. Earth Planet. Sci. Lett., 56, 127–47CrossRefGoogle Scholar
Newell, N. E., Newell, R. E., Hsuing, J. &Wu, Z. (1989). Global marine temperature variation and the solar magnetic cycle. Geophys. Res. Lett., 16, 311–14CrossRefGoogle Scholar
Nicholas, F. J. &Glasspoole, J. (1932). General monthly rainfall for England and Wales, 1727 to 1931. Br. Rainfall, 1931, 299–306Google Scholar
Nobre, P. &Shukla, J. (1996). Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 2464–792.0.CO;2>CrossRefGoogle Scholar
Oeschger, H. & Beer, J. (1990). In the past 5000 years history of solar modulation of cosmic radiation from 10Be and 14C studies. The Earth's Climate and Variability of the Sun over Recent Millennia, ed. J. C. Pecker and S. K. Runcorn, pp. 73–82. London: Royal Society
Oix, et al. (1999). Spectral analysis of a 1000-year stalagmite lamina-thickness record from Shihua Cavern, Beijing, China, and its climatic significance. The Holocene, 9, 689–94Google Scholar
Okal, E. &Anderson, D. L. (1975). On the planetary theory of sunspots. Nature, 253, 511–13CrossRefGoogle Scholar
Oliver, R., Ballester, J. L. &Baudin, F. (1998). Emergence of magnetic flux on the Sun as the cause of a 158-day periodicity in sunspot areas. Nature, 394, 552–3CrossRefGoogle Scholar
Paillard, D. (1998). The timing of Pleistocene glaciations from a simple multiple-state model. Nature, 391, 378–81CrossRefGoogle Scholar
Palmer, T. (1993). A nonlinear dynamical perspective on climate change. Weather, 48, 314–25CrossRefGoogle Scholar
Parker, D. E., Legg, T. P. &Folland, C. K. (1992). A new daily Central England temperature series, 1772–1991. Int. J. Climatol. 12, 317–42CrossRefGoogle Scholar
Pestiaux, P., et al. (1988). Paleoclimatic variability at frequencies ranging from one cycle per 20 kyr to one cycle per kyr: evidence of non-linear behaviour of the climate system. Climate Change, 12, 9–37CrossRefGoogle Scholar
Peterson, R. G. &White, W. (1998). Slow oceanic teleconnections linking the Antarctic Circumpolar Wave with tropical ENSO. J. Geophys. Res., 103, 24573–83CrossRefGoogle Scholar
Petit, J. R., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–36CrossRefGoogle Scholar
Philander, S. G. H. (1983). El Niño Southern Oscillation. Nature, 302, 295–301CrossRefGoogle Scholar
Philander, S. G. H. (1990). El Niño, La Niña, and the Southern Oscillation. New York: Academic Press
Pittock, A. B. (1978). A critical look at long term sun–weather relationships. Rev. Geophys. Space Phys., 16, 400–20CrossRefGoogle Scholar
Pittock, A. B. (1983). Solar variability, weather and climate: an update. Q. J. R. Meteorol. Soc., 109, 23–55CrossRefGoogle Scholar
Plaut, G., Ghil, M. &Vautard, R. (1995). Interannual and interdecadal variability in 335 years of Central England temperatures. Science, 250, 324–7Google Scholar
Pool, R. (1989). Ecologists flirt with chaos. Science, 243, 310–13CrossRefGoogle ScholarPubMed
Rahmstorf, S. (2003). Timing of abrupt climate change: A precise clock. Geophys. Res. Lett., 30, No. 10, 1510, doi 10.1029/2003GLO17115CrossRefGoogle Scholar
Rahmstorf, S. &Alley, R. (2002). Stochastic resonance in glacial climate. Eos, 83, 129–35CrossRefGoogle Scholar
Raisbeck, G. M., Yiou, F., Jouzel, J & Petit, J. R. (1990). 10Be and δH in polar ice cores as a probe of the solar variability's influence on climate. In The Earth's Climate and Variability of the Sun over Recent Millennia, eds. J. C. Pecker and S. K. Runcorn, pp. 65–72. London: Royal Society
Rajagopalan, B., Kushnir, Y. &Torre, Y. M. (1998). Observed decadal midlatitude and tropical atlantic variability. Geophys. Res. Lett., 25, 3967–70CrossRefGoogle Scholar
Ram, M. &Stolz, M. (1999). Possible solar influences on the dust profile of the GISP2 ice core from central Greenland. Geophys. Res. Lett., 26, 1043–6CrossRefGoogle Scholar
Ram, M.Stolz, M. &Koenig, G. (1997). Eleven-year cycle of dust concentration variability observed in the dust profile of the GISP2 ice core from central Greenland: possible solar cycle connection. Geophys. Res. Lett., 24, 2359–62CrossRefGoogle Scholar
Ramanathan, R., et al. (1989). Cloud-radiative forcing and climate: results of the Earth radiation budget experiment. Science, 243, 57–63CrossRefGoogle ScholarPubMed
Rampino, M. R., Sanders, J. E., Newman, W. S. & Konigson, L. K. (1987). Climate: History, Periodicity and Predictability. New York: Van Nostrand Reinhold
Rex, D. F. (1950). Blocking action in the middle troposphere and its effects on regional climate. Tellus, 2, 196–211 (Part I), 275–301 (Part II)Google Scholar
Rind, D. (2001). The Sun's role in climatic variations. Science, 296, 673–7CrossRefGoogle Scholar
Roberts, W. O. &Olson, R. H. (1973). Geomagnetic storms and wintertime 300 mb trough development in the North Pacific–North America area. J. Atmos. Sci., 30, 135–402.0.CO;2>CrossRefGoogle Scholar
Robertson, A. W., Mechoso, C. R. &Kim, Y.-J. (2000). The influence of Atlantic sea surface temperature anomalies on the North Atlantic oscillation. J. Climate, 13, 122–382.0.CO;2>CrossRefGoogle Scholar
Rodwell, M. J.Rowell, D. P. &Folland, C. K. (1999). Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398, 320–3CrossRefGoogle Scholar
Roosen, R. G., Harrington, R. S., Giles, J. &Browning, I. (1976). Earth tides, volcanoes and climate change. Nature, 261, 680–2CrossRefGoogle Scholar
Ropelewski, C. F. &Halpert, M. S. (1987). Global and regional scale preciptation patterns associated with the El Niño Southern Oscillation. Mon. Wea. Rev., 115, 1606–262.0.CO;2>CrossRefGoogle Scholar
Ropelewski, C. F., Halpert, M. S. &Wang, X. (1992). Observed tropical biennial variability and its relationship to the Southern Oscillation. J. Climate, 5, 536–472.0.CO;2>CrossRefGoogle Scholar
Rossow, W. B. &Schiffer, R. A. (1999). Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc., 80, 2261–872.0.CO;2>CrossRefGoogle Scholar
Ruiz-Barradas, A., Carton, J. A. &Nigam, S. (2000). Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. J. Climate, 13, 3285–972.0.CO;2>CrossRefGoogle Scholar
Saito, K. &Cohen, J. (2003). The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophys. Res. Lett., 30, No. 6, 1302, doi: 10.1029/2002GL016341Google Scholar
Saji, N. J., Goswami, B. N., Vinayachandran, P. N. &Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360–3CrossRefGoogle ScholarPubMed
Schlesinger, M. E. &Ramankutty, N. (1994). An oscillation in the global climate system of period 65–70 years. Nature, 367, 723–6CrossRefGoogle Scholar
Schmutz, C., et al. (2000). Can we trust proxy-based NAO index reconstructions?Geophys. R. Lett., 27, 1135–8CrossRefGoogle Scholar
Schonweise, C. D. (1980). Statistical comparison of central England annual and monthly air temperature variability. Meteorol. Mag. 109, 101–12Google Scholar
Schwabe, H. (1844). Solar observations during 1843. Astr. Nachr., 21, 233–48Google Scholar
Shackleton, N. J. &Opdyke, N. D. (1973). Quatern. Res., 3, 39CrossRef
Shaw, N. (1926–1932). Manual of Meteorology. Cambridge: Cambridge University Press
Shaw, N. (1933). The Drama of the Weather. Cambridge: Cambridge University Press
Selley, R. C. (1988). Applied Sedimentology. London: Academic Press
Sherratt, A. (1980). Cambridge Encyclopedia of Earth Sciences. Cambridge: Cambridge University Press
Shindell, D. T., Rind, D., Balachandran, N., Lean, J. &Lonergan, P. (1999). Solar cycle variability, ozone and climate. Science, 284, 305–8CrossRefGoogle ScholarPubMed
Slingo, J. M., et al. (1996). Intra seasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Clim. Dyn., 12, 325–57CrossRefGoogle Scholar
Slingo, J. M., Rowell, D. P.Sperber, K. R. &Nortley, F. (1999). On the predictability of the interannual behaviour of the Madden–Julian Oscillation and its relationship with El Niño. Q. J. R. Meteorol. Soc., 125, 583–609Google Scholar
Smith, D. G. (1982). Cambridge Encyclopedia of Earth Sciences. Cambridge: Cambridge University Press
Sommeria, J., Meyers, S. D. &Swinney, H. L. (1988). A laboratory simulation of Jupiter's Great Red Spot. Nature, 331, 374–6CrossRefGoogle Scholar
Soon, W. H., Posmentier, E. &Baliunas, S. L. (2000a). Climate hypersensitivity to solar forcing?Ann. Geophys., 18, 583–8CrossRefGoogle Scholar
Soon, W. H., Baliunas, S. L., Posmentier, E. &Okeke, P. (2000b). Variations in solar coronal hole area and terrestrial lower tropospheric temperature from 1979 to mid-1998: astronomical forcings of change in earth's climate?New Astron., 4, 563–79CrossRefGoogle Scholar
Steig, E. J. &Alley, R. B. (2002). Phase relationships between Antarctica and Greenland climate records. Ann. Glaciol., 35, 451–6CrossRefGoogle Scholar
Stommel, H. (1961). Thermohaline circulation with two stable regimes of flow. Tellus, 13, 224–30CrossRefGoogle Scholar
Stone, L., Saparin, P. I., Huppert, A., &Price, C. (1998). El Niño chaos – the role of noise and stochastic resonance on the ENSO cycle. Geophys. Res. Lett., 25, 175–8CrossRefGoogle Scholar
Stuiver, M. &Braziunas, T. F. (1989). Atmospheric 14C and century-scale solar oscillations. Nature, 338, 405–8CrossRefGoogle Scholar
Stuiver, M. &Quay, P. D. (1980). Changes in atmospheric carbon-14 attributable to a variable Sun. Science, 207, 11–19CrossRefGoogle Scholar
Stuiver, M., et al. (1998). INTCAL98 Radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon, 40, 1041–83CrossRefGoogle Scholar
Sturges, W. &Hong, B. G. (2001). Gulf stream transport variability at periods of decades. J. Phys. Oceanogr., 31, No. 5, 1304–122.0.CO;2>CrossRefGoogle Scholar
Suarez, M. J., &Schopf, P. S. (1988). A delayed action oscillator for ENSO. J. Atmos. Sci. 45, 3283–72.0.CO;2>CrossRefGoogle Scholar
Suess, H. E. &Linick, T. W. (1990). The C record in bristlecone pine wood of the past 8000 years based on the dendrochronology of the late C. W. Ferguson. Phil. Trans. R. Soc. Lond., A 330, 403–412. (Also published in Pecker, & Runcorn (1990).)CrossRefGoogle Scholar
Sutton, R. T. &Allen, M. R. (1997). Decadal predictability of the North Atlantic sea surface temperature and climate. Nature, 388, 563–7CrossRefGoogle Scholar
Svensmark, H. andFriis-Christensen, E. (1997). Variation of cosmic ray flux and global cloud coverage – a missing link in solar–climate relationships. J. Atmos. Solar–Terrestrial Phys., 59, 1225–32CrossRefGoogle Scholar
Tabony, R. C. (1979). A spectral filter analysis of long-period records in England and Wales. Meteorol. Mag. 108, 97–119Google Scholar
Takahashi, M. (1999). Simulation of the stratospheric quasi-biennial oscillation in a general circulation model. Geophys. Res. Lett., 26, 1307–10CrossRefGoogle Scholar
Taylor, K. C., et al. (1993). The ‘flickering switch’ of late Pleistocene climate change. Nature, 361, 432–6CrossRefGoogle Scholar
Thejll, P. (2001). Decadal power in land air temperatures: is it statistically significant?J. Geophys. Res., 106, 31693–704CrossRefGoogle Scholar
Thompson, J. M. T. & Stewart, H. B. (1986). Nonlinear Dynamics and Chaos. New York: John Wiley
Thompson, D. W. C., Baldwin, M. P. &Wallace, J. M. (2002). Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction. J. Climate, 15, 1421–82.0.CO;2>CrossRefGoogle Scholar
Thompson, D. W. J. &Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 409–12Google Scholar
Thompson, D. W. J., Wallace, J. M. &Hegerl, G. C. (2000). Annual modes in the extratropical circulation Part II: Trends. J. Climate, 13, 1018–362.0.CO;2>CrossRefGoogle Scholar
Tinsley, B. A. (1988). The solar cycle and the QBO influences on the latitude of storm tracks in the North Atlantic. Geophys. Res. Lett., 15, 1000–16CrossRefGoogle Scholar
Tinsley, B. A. (1996). Correlations of atmospheric dynamics with solar wind-induced changes of air–earth current density into cloud top. J. Geophys. Res., 101, 29701–14CrossRefGoogle Scholar
Tinsley, B. A. & Yu, F. (2002). Effects of particle flux variations on clouds and climate. AGU Monograph Solar Variability and its Effect on the Earth's Atmospheric and Climate System, ed. C. Frolich, H. Hudson, J. Kuhn, J. McCormack, J. North, J. Pap, W. Sprigg, and S. T. Wu
Torrence, C. &Compo, G. P. (1998). A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc., 79, 61–782.0.CO;2>CrossRefGoogle Scholar
Tourre, Y. M., Rajagopalan, B B..,Kushnir, Y., Barlow, M. &White, W. B. (2001). Patterns of coherent decadal and interdecadal climate signals in the Pacific basin during the 20th century. Geophy. Res. Lett., 28, 2069–72CrossRefGoogle Scholar
Trenberth, K. E. (ed.) (1992). Climate System Modelling. Cambridge: Cambridge University Press
Tripathi, S. N. &Harrison, R. G. (2002). Enhancement of contact nucleation by scavenging of charged aerosol particles. Atmos. Res., 62, 57–70CrossRefGoogle Scholar
Tsien, H. S. (1954). Engineering Cybernetics. New York: McGraw Hill
Tyson, P. D. (1986). Climate Change and Variability in Southern Africa. Oxford: Oxford University Press
Ulrych, T. J. &Bishop, T. N. (1975). Maximum entropy spectral analysis and autoregressive decomposition. Rev. Geophys. Space Phys. 13, 183–200CrossRefGoogle Scholar
Loon, H. &Labitzke, K. (2000). The influence of the 11-year solar cycle on the stratosphere below 30 km: a review. Space Science Rev., 94, 259–78CrossRefGoogle Scholar
Loon, H. &Rogers, J. C. (1978). The seesaw in winter temperatures between Greenland and northern Europe. Part 1: General description. Mon. Wea. Rev., 106, 295–310Google Scholar
Venegas, S. A. (2001). Statistical Methods of Signal Detection in Climate. Danish Center for Earth System Science, University of Copenhagen
Vines, R. G. &Tomlinson, A. I. (1985). The Southern Oscillation and rainfall patterns in the Southern Hemisphere. S. Afr. J. Sci. 85, 151–6Google Scholar
Walker, G. T. (1927). World weather III, Mem. R. Meteorol. Soc., 2, No. 17. LondonGoogle Scholar
Walker, G. T. (1928). World Weather. Q. J. R. Meteorol. Soc., 54, 79–87CrossRefGoogle Scholar
Walker, G. T. (1929). World Weather IV – some applications to seasonal foreshadowing. Mem. R. Meteorol. Soc., 3, No. 24. LondonGoogle Scholar
Walker, G. T &Bliss, E. W. (1933). World weather V, Mem. R. Meteorol. Soc., 4, No. 36. LondonGoogle Scholar
Wang Shao-Wu & Zhao Zong-ci (1981). Droughts and floods in China 1470–1979. In Climate and History. Studies in Past Climates and their Impact on Man, ed. T. M. L. Wrgley, M. J. Ingram & G. Farmer, pp. 271–88. Cambridge: Cambridge University Press
Weaver, A. J., Sarachik, E. S. &Marotzke, J. (1992). Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature, 353, 836–8CrossRefGoogle Scholar
Webster, P. J., Moore, A. M.Loschnigg, J. P. &Leben, R. R. (1999). Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356–60CrossRefGoogle ScholarPubMed
White, W., &Peterson, R. G. (1996). An Antarctic circumpolar wave in surface pressure, wind, temperature, and sea ice extent. Nature, 380, 699–702CrossRefGoogle Scholar
Whitlock, C. &Bartlein, P. J. (1997). Vegetation and climate change in northwestern America during the last 125 kyr. Nature, 388, 57–61CrossRefGoogle Scholar
Wigley, T. M. L., Lough, J. M. &Jones, P. D. (1984). Spatial patterns of precipitation in England and Wales and a revised homogenous England and Wales precipitation series. J. Climatol., 4, 1–25CrossRefGoogle Scholar
Wilcox, J. M.Duffy, P. B.Schatten, K. H.Svalgaard, L.Scherrer, P. S.Roberts, W. O. &Olson, R. (1979). Interplanetary magnetic field polarity and the size of low pressure troughs near 180 degrees west longitude. Science, 204, 60CrossRefGoogle Scholar
Williams, E. R. (1992). The Schumann resonance: a global tropical thermometer. Science, 256, 1184CrossRefGoogle ScholarPubMed
Williams, E. R. (1994). Global circuit response to seasonal variations in global surface air temperature. Mon. Wea. Rev., 122, 1917–292.0.CO;2>CrossRefGoogle Scholar
Williams, G. E. (1981). Sunspot periods in the late Precambrian glacial climate and solar–planetary relations. Nature, 291, 624–8CrossRefGoogle Scholar
Williams, G. E. (1986). The solar cycle in Precambrian time. Sci. Am., August, p. 84Google Scholar
Williams, G. E. (1988). Cyclicity in the late Precambrian Elatina Formation, South Australia: solar or tidal signal?Clim. Change, 13, 117–28CrossRefGoogle Scholar
Willson, R. (1997). Total solar irradiance trend during solar cycles 21 and 21. Science, 277, 1963–65CrossRefGoogle Scholar
Willson, R. C. &Hudson, H. S. (1991). The Sun's luminosity over a complete cycle. Nature, 351, 42–4CrossRefGoogle Scholar
Willson, R. C. &Mordvinov, A. V. (2003). Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett., 30, 1199–202CrossRefGoogle Scholar
Winograd, I. J. (2002). The California Current, Devils Hole, and Pleistocene climate. Science. 296, 7CrossRefGoogle ScholarPubMed
Winograd, I. J., Szabo, B. J., Coplen, T. B., &Riggs, A. C. (1988). A 250,000-year climatic record from Great Basin vein calcite: implications for Milankovitch theory. Science, 242, 1275–80CrossRefGoogle ScholarPubMed
Winograd, I. J., et al. (1992). Continuous 500,000-year climate record from vein calcite in Devil's Hole, Nevada. Science, 258, 255–60CrossRefGoogle Scholar
Winograd, I. J., Landwehr, J. M., Ludwig, K. R., Coplan, T. B. &Riggs, A. C. (1997). Duration and structure of the past four interglaciations. Quatern. Res., 48, 141–54CrossRefGoogle Scholar
Wunsch, C. (2000). Moon, tides and climate. Nature, 405, 743–4CrossRefGoogle ScholarPubMed
Yiou, P., Sornette, D. &Ghil, M. (2000). Data-adaptive wavelettes and multi-scale singular-spectrum analysis. Physica D, 142, 254–90CrossRefGoogle Scholar
Yule, G. U. (1927). A method of investigating periodicities in disturbed series, with special reference to Wolfe's sunspot numbers. Phil. Trans. R. Soc. Lond. A, 226, 267–98CrossRefGoogle Scholar
Zebiak, S. E., &Cane, M. A. (1987). A model El Niño/Southern Oscillation, Mon. Wea. Rev., 115, 2262–782.0.CO;2>CrossRefGoogle Scholar
Zhang, L. H. &Swinney, H. L. (1985). Non-propagating oscillatory modes in Couette–Taylor flow. Phys. Rev. A, 31, 1006–9CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×