Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-07T01:27:24.779Z Has data issue: false hasContentIssue false

9 - Shock-Wave Unsteadiness in Turbulent Shock Boundary-Layer Interactions

Published online by Cambridge University Press:  05 June 2012

Holger Babinsky
Affiliation:
University of Cambridge
John K. Harvey
Affiliation:
Imperial College London
Get access

Summary

Introduction

If the shock wave associated with a shock wave–boundary-layer interaction (SBLI) is intense enough to cause separation, flow unsteadiness appears to be the almost-inevitable outcome. This often leads to strong flow oscillations that are experienced far downstream of the interaction and can be so severe in some instances as to inflict damage on an airframe or an engine. This is generally referred to as “breathing” or, simply, “unsteadiness” because it involves very low frequencies, typically at least two orders of magnitude below the energetic eddies in the incoming boundary layer. The existence of these oscillations raises two questions: “What is their cause?” and “Is there a general way in which they can be understood?”

There are several distinct types of SBLIs, depending on the geometry and whether the flow separates, and it is possible that these create fundamentally different types of unsteadiness. An interpretation was proposed by Dussauge [1] and Dussauge and Piponniau [2] using the diagram reproduced in Fig. 9.1. The organization of the diagram requires comment: In the upper branch, unseparated flows are depicted; those that separate are restricted to the lower branch. In both cases, the shock wave divides the flow into two half spaces: the upstream and the downstream layers. Hence, the shock wave can be considered an interface between the two conditions and its position and motion vary accordingly. With these various elements in mind, the shock motion can be analyzed from the perspective of the upstream and downstream conditions. The discussion in this chapter is a commentary about flow organization and other phenomena related to the two branches of the diagram.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dussauge, J. P.Compressible turbulence in interactions of supersonic flowsProceedings of the Conference TI 2006 BerlinSpringer VerlagGoogle Scholar
Dussauge, J. P.Piponniau, S.Shock-boundary layer interactions: Possible sources of unsteadinessJournal of Fluids and Structures 24 2008 1166CrossRefGoogle Scholar
Culick, F. E. CRogers, TThe response of normal shocks in diffusersAIAA Journal 21 1983 1382CrossRefGoogle Scholar
Robinet, J. C.Casalis, GShock oscillations in a diffuser modelled by a selective noise amplificationAIAA Journal 37 1999 1CrossRefGoogle Scholar
Sajben, MKroutil, J. C.Effect of initial boundary layer thickness on transonic diffuser flowAIAA Journal 19 1981 1386CrossRefGoogle Scholar
Garnier, E 2000
Wu, MMartin, M. P.Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation dataJournal of Fluid Mechanics 594 2008 71CrossRefGoogle Scholar
Ribner, H. STucker, MSpectrum of turbulence in a contracting streamNACA TN 2606 1952Google Scholar
Debiève, J. F.Gouin, HGaviglio, JEvolution of the Reynolds stress tensor in a shock-turbulence interactionIndian Journal of Technology 20 1982 90Google Scholar
Jacquin, LCambon, CBlin, ETurbulence amplification by a shock wave and rapid distortion theoryPhysics of Fluids A 5 1993 2539CrossRefGoogle Scholar
Ribner, H. S.Convection of a pattern of vorticity through a shock waveNACA TN 2864 1953Google Scholar
Kovasznay, L. S. G.Turbulence in supersonic flowJournal of Aeronautical Sciences 20 1953 657CrossRefGoogle Scholar
Chu, B. T.Kovasznay, L. S. G.Nonlinear interactions in a viscous heat-conducting compressible gasJournal of Fluid Mechanics 3 1958 494CrossRefGoogle Scholar
Anyiwo, J. CBushnell, D. M.Turbulence amplification in shock wave boundary layer interactionsAIAA Journal 20 1982 893CrossRefGoogle Scholar
Lee, SLele, S. K.Moin, PDirect numerical simulation of isotropic turbulence interacting with a weak shock waveJournal of Fluid Mechanics 251 1993 533CrossRefGoogle Scholar
Hannapel, RFriedrich, RDirect numerical simulation of a Mach 2 shock interacting with isotropic turbulenceApplied Science Research 54 1995 205CrossRefGoogle Scholar
Garnier, ESagaut, PDeville, MLarge eddy simulation of shock-homogeneous turbulence interactionComputer and Fluids 31 2002 245CrossRefGoogle Scholar
Debiève, J. F.Lacharme, J. P.A shock wave???free turbulence interactionTurbulent Shear Layer–Shock Wave InteractionsDélery, J.BerlinSpringer Verlag 1985Google Scholar
Poggie, JSmits, A. J.Shock unsteadiness in a reattaching shear layerJournal of Fluid Mechanics 429 2001 155CrossRefGoogle Scholar
Lee, B. H. K.Self-sustained shock oscillations on airfoils at transonic speedsProgress in Aerospace Sciences 37 2001 147CrossRefGoogle Scholar
Crouch, J. D.Garbaruk, AMagidov, DPredicting the onset of flow unsteadiness based on global instabilityJournal of Computational Physics 224 2007 924CrossRefGoogle Scholar
Galli, ACorbel, BBur, RControl of forced shock wave oscillations and separated boundary later interactionAerospace Science and Technology 9 2005 653CrossRefGoogle Scholar
Bruce, P. J. K.Babinsky, HUnsteady shock-wave dynamicsJournal of Fluid Mechanics 603 2008 463CrossRefGoogle Scholar
Piponniau, SDussauge, J. P.Debiève, J. F.Dupont, PA simple model for low frequency unsteadiness in shock-induced separationJournal of Fluid Mechanics 629 2009 87CrossRefGoogle Scholar
Touber, ESandham, NOblique shock impinging on a turbulent boundary layer: Low frequency mechanismsAIAA Paper 2008 2008Google Scholar
Souverein, L. J.van Oudheusden, B. W.Scarano, FDupont, PUnsteadiness characterization in a shock wave turbulent boundary layer interaction through dual PIVAIAA Paper 2008 2008Google Scholar
Kiya, MSasaki, KStructure of a turbulent separation bubbleJournal of Fluid Mechanics 137 1983 83CrossRefGoogle Scholar
Dussauge, J. P.Dupont, PDebiève, J. F.Unsteadiness in shock wave boundary layer interactions with separationAerospace Science and Technology 10 2006 85CrossRefGoogle Scholar
Dolling, D. S.Smith, D. R.Unsteady shock-induced separation in Mach 5 cylinder interactionsAIAA Journal 1989 12 1598Google Scholar
Thomas, FPutman, CChu, H.On the mechanism of unsteady shock oscillation in shock wave–turbulent boundary layer interactionExperiments in Fluids 18 1994 69CrossRefGoogle Scholar
Smits, A. J.Dussauge, J. P.Turbulent shear layers in supersonic flowsNew YorkSpringer Verlag 2006Google Scholar
Cherry, N. J.Hillier, RLatour, M. E. MUnsteady measurements in a separated and reattaching flowJournal of Fluid Mechanics 144 1984 14CrossRefGoogle Scholar
Dupont, P.Piponniau, S.Sidorenko, A.Debiève, J. FInvestigation by Particle Image Velocimetry measurements of oblique shock reflection with separationAIAA Journal 46 2008 1365CrossRefGoogle Scholar
Graftieaux, L.Michard, M.Grosjean, N.Combining OIV, POD, and vortex identification algorithms for the study of unsteady turbulent swirling flowsMeasurement Science and Technology 12 2001 1422CrossRefGoogle Scholar
Adrian, R. J.Meinhart, C. D.Tomkins, C. D.Vortex organization in the outer region of the turbulent boundary layerJournal of Fluid Mechanics 422 2000 1CrossRefGoogle Scholar
Ganapathisubramani, B.Clemens, N. T.Dolling, D. S.Large-scale motions in a supersonic turbulent boundary layerJournal of Fluid Mechanics 556 2006 271CrossRefGoogle Scholar
Dupont, P.Haddad, C.Debiève, J. F.Space and time organization in a shock-induced separated boundary layerJournal of Fluid Mechanics 559 2006 255CrossRefGoogle Scholar
Zukoski, E. E.Turbulent boundary layer separation in front of a forward-facing stepAIAA Journal 5 1967 1746CrossRefGoogle Scholar
Reijasse, P.Aérodynamique des tuyères propulsives en sur-détente: Décollement libre et charges latérales en régime stabiliseTh??se de Doctorat, UnivParis VI, Paris 2005Google Scholar
Délery, J.Marvin, J. G.Shock wave–boundary layer interactionsAGARDograph 280 1986Google Scholar
Haddad, C.Instationnarités, mouvements d’onde de choc et tourbillons à grande échelle dans une interaction onde de choc–couche limite avec décollementTh??se de DoctoratUniversité de Provence, Marseille, France 2005Google Scholar
Dolling, D. S.Fifty years of shock wave–boundary layer interactions: What nextAIAA Journal 39 2001 1517CrossRefGoogle Scholar
Ganapathisubramani, B.Longmire, E. K.Marusic, I.Characteristics of vortex packets in turbulent boundary layersJournal of Fluid Mechanics 478 2003 35CrossRefGoogle Scholar
Ganapathisubramani, B.Clemens, N. T.Dolling, D. S.Planar imaging measurements to study the effect of spanwise structure of upstream turbulent boundary layer on shock-induced separationAIAA Paper 2006 2006Google Scholar
Dupont, P.Haddad, C.Ardissone, J. P.Debiève, J. F.Space and time organisation of a shock wave–turbulent boundary layer interactionAerospace Science and Technology 9 2005 561CrossRefGoogle Scholar
Dupont, P.Haddad, C.Debiève, J. F.Space and time organization in a shock-induced separated boundary layerJournal of Fluid Mechanics 559 2006 255CrossRefGoogle Scholar
Piponniau, S.Dupont, P.Debiève, J. F.Sidorenko, A. 2007
Papamoschou, D.Roshko, A.The compressible turbulent shear layer: An experimental studyJournal of Fluid Mechanics 197 1988 453CrossRefGoogle Scholar
Blumen, W.Shear layer instability of an inviscid compressible fluidJournal of Fluid Mechanics 40 1970 769CrossRefGoogle Scholar
Muscat, P.Structures à grandes échelles dans une couche de mélange supersonique. Analyse de Fourier et analyse en ondelettesTh??se de Doctorat, Universit?? de la M??diterran??e (Aix-Marseille II)Marseille, France 1998Google Scholar
Papamoschou, D.Structure of the Compressible Turbulent Shear LayerAIAA Journal 29 5 1991CrossRefGoogle Scholar
Barre, S.Dupont, P.Dussauge, J. P.Estimation de la vitesse de convection des structures turbulentes à grande échelle dans les couches de mélange supersonique. Aerospace Science and Technology 1997 4 355
Tam, C. K. W.Hu, F. Q.The instability and acoustic wave modes of supersonic mixing layers inside a rectangular channelJournal of Fluid Mechanics 203 1989 51CrossRefGoogle Scholar
Greenough, J. A.Riley, J. J.Soetrisno, M.Eberhardt, D. S.The effect of walls on a compressible mixing layerAIAA Paper 89 1989Google Scholar
Erengil, M. E.Dolling, D. S.Unsteady wave structure near separation in a Mach 5 compression ramp interactionAIAA Journal 29 1991 728Google Scholar
Wu, Jie-ZhiMa, Hui-YangZhou, Ming-De 2006
Chapman, D.Huehn, D.Larson, H. 1957

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×