Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T20:55:08.275Z Has data issue: false hasContentIssue false

39 - Proteins and neuropeptides in REM-sleep regulation and function

from Section V - Functional significance

Published online by Cambridge University Press:  07 September 2011

Radhika Basheer
Affiliation:
Harvard Medical School
Birendra N. Mallick
Affiliation:
Jawaharlal Nehru University
S. R. Pandi-Perumal
Affiliation:
Somnogen Canada Inc, Toronto
Robert W. McCarley
Affiliation:
Harvard University, Massachusetts
Adrian R. Morrison
Affiliation:
University of Pennsylvania
Get access

Summary

Summary

Rapid eye movement sleep (REMS), first described by Aserinsky and Kleitman (1953), is a distinct state during sleep when the electroencephalographic (EEG) recordings appear similar to those observed during wake with low-voltage, high-frequency asynchronous activity, whereas the electromyographic (EMG) recordings, unlike wake, show lowest levels of muscle tone (muscle atonia), accompanied by rapid eye movements detectable by electro-oculographic (EOG) recordings. This paradoxical vigilant state combining wake-like cortical activation and inactive state-like muscle atonia with rapid eye movements has been extensively studied using animal model systems since the 1950s. Today much is known about the brain regions, neuronal networks, and neurotransmitters involved in REMS regulation (Fort et al., 2009; Jones, 2004; Luppi et al., 2006; McCarley, 2007). However, promising discoveries about the mechanisms depend on the identification of molecular processes that are involved in the transition and maintenance of different vigilant states, especially REMS, which is recognized for its brevity. The recent advances in molecular biology, instrumentation, and bioinformatics further extend novel opportunities to understand the mechanisms involved in REMS regulation and its function. Currently, no study has identified a single specific protein needed for REM generation or maintenance, but several proteins have been identified as changing either during REMS or following REMS deprivation, indicating their involvement in REMS. This chapter will begin with a brief review of the genomic and proteomic studies on sleep followed by a review of reports on REMS describing these different proteins, which include transcription factors, receptors, enzymes, and small peptides, and how they have contributed significantly towards the anatomical localization of REMS-associated brain regions and neurotransmitter phenotype of neurons, and toward a better understanding of REMS regulation and function.

Type
Chapter
Information
Rapid Eye Movement Sleep
Regulation and Function
, pp. 395 - 402
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adya, H. V. & Mallick, B. N. (2000) Uncompetitive stimulation of rat brain Na-K ATPase activity by rapid eye movement sleep deprivation. Neurochem Int 36: –53.CrossRefGoogle ScholarPubMed
Ahnaou, A., Basille, M., Gonzalez, B. . (1999) Long-term enhancement of REM sleep by the pituitary adenylyl cyclase-activating polypeptide (PACAP) in the pontine reticular formation of the rat. Eur J Neurosci 11: –8.CrossRefGoogle ScholarPubMed
Ahnaou, A., Yon, L., Arluison, M. . (2006) Immunocytochemical distribution of VIP and PACAP in the rat brain stem: implications for REM sleep physiology. Ann N Y Acad Sci 1070: –42.CrossRefGoogle ScholarPubMed
Antignani, A. & Youle, R. J. (2006) How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane?Curr Opin Cell Biol 18: –9.CrossRefGoogle ScholarPubMed
Aserinsky, E. & Kleitman, N. (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118: –4.CrossRefGoogle ScholarPubMed
Bandyopadhya, R. S., Datta, S. & Saha, S. (2006) Activation of pedunculopontine tegmental protein kinase A: a mechanism for rapid eye movement sleep generation in the freely moving rat. J Neurosci 26: –42.CrossRefGoogle ScholarPubMed
Basheer, R., Magner, M., McCarley, R. W. & Shiromani, P. J. (1998) REM sleep deprivation increases the levels of tyrosine hydroxylase and norepinephrine transporter mRNA in the locus coeruleus. Brain Res Mol Brain Res 57: –40.CrossRefGoogle ScholarPubMed
Basheer, R., Brown, R., Ramesh, V., Begum, S. & McCarley, R. W. (2005) Sleep deprivation-induced protein changes in basal forebrain: implications for synaptic plasticity. J Neurosci Res 82: –8.CrossRefGoogle ScholarPubMed
Baskey, G., Singh, A., Sharma, R. & Mallick, B. N. (2009) REM sleep deprivation-induced noradrenaline stimulates neuronal and inhibits glial Na-K ATPase in rat brain: in vivo and in vitro studies. Neurochem Int 54: –71.CrossRefGoogle ScholarPubMed
Biswas, S., Mishra, P., Mallick, B. N. (2006) Increased apoptosis in rat brain after rapid eye movement sleep loss. Neuroscience 142: –31.CrossRefGoogle ScholarPubMed
Bourgin, P., Ahnaou, A., Laporte, A. M., Hamon, M. & Adrien, J. (1999) Rapid eye movement sleep induction by vasoactive intestinal peptide infused into the oral pontine tegmentum of the rat may involve muscarinic receptors. Neuroscience 89: –302.CrossRefGoogle ScholarPubMed
Brindle, P. K. & Montminy, M. R. (1992) The CREB family of transcription activators. Curr Opin Genet Dev 2: –204.CrossRefGoogle ScholarPubMed
Chemelli, R. M., Willie, J. T., Sinton, C. M. . (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98: –51.CrossRefGoogle ScholarPubMed
Cirelli, C. (2009) The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci 10: –60.CrossRefGoogle Scholar
Cirelli, C., Pfister-Genskow, M., McCarthy, D., Woodbury, R. & Tononi, G. (2009) Proteomic profiling of the rat cerebral cortex in sleep and waking. Arch Ital Biol 147: –68.Google ScholarPubMed
Clark, S. D., Nothacker, H. P., Wang, Z. . (2001) The urotensin II receptor is expressed in the cholinergic mesopontine tegmentum of the rat. Brain Res 923: –7.CrossRefGoogle ScholarPubMed
Clark, S. D., Nothacker, H. P., Blaha, C. D. . (2005) Urotensin II acts as a modulator of mesopontine cholinergic neurons. Brain Res 1059: –48.CrossRefGoogle ScholarPubMed
Costa-Mattioli, M., Sossin, W. S., Klann, E. & Sonenberg, N. (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61: –26.CrossRefGoogle ScholarPubMed
Datta, S. (2007) Activation of pedunculopontine tegmental PKA prevents GABAB receptor activation-mediated rapid eye movement sleep suppression in the freely moving rat. J Neurophysiol 97: –50.CrossRefGoogle ScholarPubMed
Datta, S. & Prutzman, S. L. (2005) Novel role of brain stem pedunculopontine tegmental adenylyl cyclase in the regulation of spontaneous REM sleep in the freely moving rat. J Neurophysiol 94: –37.CrossRefGoogle ScholarPubMed
Datta, S., Siwek, D. F. & Stack, E. C. (2009) Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep. Neuroscience 163: –414.CrossRefGoogle ScholarPubMed
de Lecea, L. & Bourgin, P. (2008) Neuropeptide interactions and REM sleep: a role for Urotensin II?Peptides 29: –51.CrossRefGoogle ScholarPubMed
de Lecea, L., Kilduff, T. S., Peyron, C. . (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95: –7.CrossRefGoogle ScholarPubMed
Dragunow, M. & Faull, R. (1989) The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29: –5.CrossRefGoogle ScholarPubMed
Drucker-Coli, R. & Benitez, J. (1977) REM sleep rebound during withdrawal from chronic amphetamine administration is blocked by chloramphenicol. Neurosci Lett 6: –71.CrossRefGoogle ScholarPubMed
Drucker-Colin, R. R., Spanis, C. W., Cotman, C. W. & McGaugh, J. L. (1975) Changes in protein levels in perfusates of freely moving cats: relation to behavioral state. Science 187: –5.CrossRefGoogle ScholarPubMed
Fort, P., Bassetti, C. L. & Luppi, P. H. (2009) Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur J Neurosci 29: –53.CrossRefGoogle ScholarPubMed
Guzman-Marin, R., Suntsova, N., Bashir, T. . (2008) Rapid eye movement sleep deprivation contributes to reduction of neurogenesis in the hippocampal dentate gyrus of the adult rat. Sleep 31: –75.CrossRefGoogle ScholarPubMed
Hobson, J. A., McCarley, R. W. & Wyzinski, P. W. (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189: –8.CrossRefGoogle ScholarPubMed
Huitron-Resendiz, S., Kristensen, M. P., Sanchez-Alavez, M. . (2005) Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons. J Neurosci 25: –74.CrossRefGoogle ScholarPubMed
Inoue, S. (1989) Mechanism of sleep and insomnia. Kangogaku Zasshi 53: –60. (Japanese. No abstract available).Google ScholarPubMed
Ishimori, K. (1909) The demonstration of intracerebral substances in sleep-deprived animals: sleep-inducing substances as the true cause of sleep. Chuo Igakkai Zasshi 84: –47.Google Scholar
Jones, B. E. (2004) Paradoxical REM sleep promoting and permitting neuronal networks. Arch Ital Biol 142: –96.Google ScholarPubMed
Kandel, E. R. (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:–8.CrossRefGoogle ScholarPubMed
Kitahama, K. & Valatx, J. L. (1975) [Effects of chloramphenicol and thiamphenicol on sleep of the mouse]. C R Seances Soc Biol Fil 169: –5.Google ScholarPubMed
Kovacs, K. J. (2008) Measurement of immediate-early gene activation- c-fos and beyond. J Neuroendocrinol 20: –72.CrossRefGoogle ScholarPubMed
Legendre, R. & Pieron, H. (1910) Le probleme des facteurs du sommeil: resultats d’injections vasculaires et intra-cerbrales de liquides insomniques. C R Soc Biol 68: –9.Google Scholar
Lin, L., Faraco, J., Li, R. . (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98: –76.CrossRefGoogle ScholarPubMed
Lopez, J., Roffwarg, H. P., Dreher, A. . (2008) Rapid eye movement sleep deprivation decreases long-term potentiation stability and affects some glutamatergic signaling proteins during hippocampal development. Neuroscience 153: –53.CrossRefGoogle ScholarPubMed
Luppi, P. H., Gervasoni, D., Verret, L. . (2006) Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris 100: –83.CrossRefGoogle ScholarPubMed
Mackiewicz, M., Shockley, K. R., Romer, M. A. . (2007) Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31: –57.CrossRefGoogle ScholarPubMed
Mallick, B. N., Singh, S. & Singh, A. (2010) Mechanism of noradrenaline-induced stimulation of Na-K ATPase activity in the rat brain: implications on REM sleep deprivation-induced increase in brain excitability. Mol Cell Biochem. 336: –16.CrossRef
Maloney, K. J., Mainville, L. & Jones, B. E. (1999) Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J Neurosci 19: –72.CrossRefGoogle ScholarPubMed
Maloney, K. J., Mainville, L. & Jones, B. E. (2000) c-Fos expression in GABAergic, serotonergic, and other neurons of the pontomedullary reticular formation and raphe after paradoxical sleep deprivation and recovery. J Neurosci 20: –79.CrossRefGoogle ScholarPubMed
Mansuy, I. M. (2003) Calcineurin in memory and bidirectional plasticity. Biochem Biophys Res Commun 311: –208.CrossRefGoogle ScholarPubMed
McCarley, R. W. (2007) Neurobiology of REM and NREM sleep. Sleep Med 8: –30.CrossRefGoogle ScholarPubMed
McCarley, R. W. & Hobson, J. A. (1975a) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189: –60.CrossRefGoogle ScholarPubMed
McCarley, R. W. & Hobson, J. A. (1975b) Discharge patterns of cat pontine brain stem neurons during desynchronized sleep. J Neurophysiol 38: –66.CrossRefGoogle ScholarPubMed
Mendelson, W. B., Guthrie, R. D., Frederick, G. & Wyatt, R. J. (1974) The flower pot technique of rapid eye movement (REM) sleep deprivation. Pharmacol Biochem Behav 2: –6.CrossRefGoogle ScholarPubMed
Morgan, J. I. & Curran, T. (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14: –51.CrossRefGoogle ScholarPubMed
Nakanishi, H., Sun, Y., Nakamura, R. K. . (1997) Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta. Eur J Neurosci 9: –9.CrossRefGoogle ScholarPubMed
Neves, G., Cooke, S. F. & Bliss, T. V. (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9: –75.CrossRefGoogle ScholarPubMed
Pawlyk, A. C., Ferber, M., Shah, A., Pack, A. I. & Naidoo, N. (2007) Proteomic analysis of the effects and interactions of sleep deprivation and aging in mouse cerebral cortex. J Neurochem 103: –13.CrossRefGoogle ScholarPubMed
Poirrier, J. E., Guillonneau, F., Renaut, J. . (2008) Proteomic changes in rat hippocampus and adrenals following short-term sleep deprivation. Proteome Sci 6:.CrossRefGoogle ScholarPubMed
Ramm, P. & Smith, C. T. (1990) Rates of cerebral protein synthesis are linked to slow wave sleep in the rat. Physiol Behav 48: –53.CrossRefGoogle ScholarPubMed
Ravassard, P., Pachoud, B., Comte, J. C. . (2009) Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation, synaptic transmission, glutamate receptor protein levels, and ERK/MAPK activation in the dorsal hippocampus. Sleep 32: –40.CrossRefGoogle ScholarPubMed
Reich, P., Driver, J. K. & Karnovsky, M. L. (1967) Sleep: effects on incorporation of inorganic phosphate into brain fractions. Science 157: –8.CrossRefGoogle ScholarPubMed
Reich, P., Geyer, S. J., Steinbaum, L., Anchors, M. & Karnovsky, M. L. (1973) Incorporation of phosphate into rat brain during sleep and wakefulness. J Neurochem 20: –205.CrossRefGoogle ScholarPubMed
Rojas-Ramirez, J. A., Aguilar-Jimenez, E., Posadas-Andrews, A., Bernal-Pedraza, J. G., Drucker-Colin, R. R. (1977) The effects of various protein synthesis inhibitors on the sleep-wake cycle of rats. Psychopharmacology (Berl) 53: –50.CrossRefGoogle ScholarPubMed
Roky, R., Obal, F., Jr., Valatx, J. L. . (1995) Prolactin and rapid eye movement sleep regulation. Sleep 18: –42.Google ScholarPubMed
Sagar, S. M., Sharp, F. R. & Curran, T. (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240: –31.CrossRefGoogle ScholarPubMed
Sakurai, T., Ameniya, A., Ishii, M. . (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92: –85.CrossRefGoogle Scholar
Shiromani, P. J., Kilduff, T. S., Bloom, F. E. & McCarley, R. W. (1992) Cholinergically induced REM sleep triggers Fos-like immunoreactivity in dorsolateral pontine regions associated with REM sleep. Brain Res 580: –7.CrossRefGoogle ScholarPubMed
Siegel, J. M. (2001) The REM sleep-memory consolidation hypothesis. Science 294: –63.CrossRefGoogle ScholarPubMed
Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. (1998) CREB and memory. Annu Rev Neurosci 21: –48.CrossRefGoogle ScholarPubMed
Sinha, A. K., Ciaranello, R. D., Dement, W. C. & Barchas, J. D. (1973) Tyrosine hydroxylase activity in rat brain following “REM” sleep deprivation. J Neurochem 20: –90.CrossRefGoogle ScholarPubMed
Soderling, T. R., Chang, B. & Brickey, D. (2001) Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 276: –22.CrossRefGoogle ScholarPubMed
Stack, E. C., Desarnaud, F., Siwek, D. F. & Datta, S. (2010) A novel role for calcium/calmodulin kinase II within the brainstem pedunculopontine tegmentum for the regulation of wakefulness and rapid eye movement sleep. J Neurochem 112: –81.CrossRef
Stickgold, R. & Walker, M. P. (2007) Sleep-dependent memory consolidation and reconsolidation. Sleep Med 8: –43.CrossRefGoogle ScholarPubMed
Thakkar, M. & Mallick, B. N. (1991) Effect of REM sleep deprivation on rat brain acetylcholinesterase. Pharmacol Biochem Behav 39: –14.CrossRefGoogle ScholarPubMed
Thakkar, M. & Mallick, B. N. (1993a) Rapid eye movement sleep-deprivation-induced changes in glucose metabolic enzymes in rat brain. Sleep 16: –4.Google ScholarPubMed
Thakkar, M. & Mallick, B. N. (1993b) Effect of rapid eye movement sleep deprivation on rat brain monoamine oxidases. Neuroscience 55: –83.CrossRefGoogle ScholarPubMed
Vazquez, J., Hall, S. C. & Greco, M. A. (2009) Protein expression is altered during spontaneous sleep in aged Sprague Dawley rats. Brain Res 1298: –45.CrossRefGoogle ScholarPubMed
Vazquez, J., Hall, S. C., Witkowska, H. E. & Greco, M. A. (2008) Rapid alterations in cortical protein profiles underlie spontaneous sleep and wake bouts. J Cell Biochem 105: –84.CrossRefGoogle ScholarPubMed
Verret, L., Leger, L., Fort, P. & Luppi, P. H. (2005) Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery. Eur J Neurosci 21: –504.CrossRefGoogle ScholarPubMed
Verret, L., Fort, P., Gervasoni, D., Leger, L. & Luppi, P. H. (2006) Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. J Comp Neurol 495: –86.CrossRefGoogle ScholarPubMed
Voronka, G., Demin, N. N. & Pevzner, L. Z. (1971) [Total protein content and quantity of basic proteins in neurons and neuroglia of rat brain supraoptic and red nuclei during natural sleep and deprivation of paradoxical sleep]. Dokl Akad Nauk SSSR 198: –7.Google ScholarPubMed
Wang, G. P., Huang, L. Q., Wu, H. J. . (2009) Calcineurin contributes to spatial memory impairment induced by rapid eye movement sleep deprivation. Neuroreport 20: –6.CrossRefGoogle ScholarPubMed
Yamuy, J., Mancillas, J. R., Morales, F. R. & Chase, M. H. (1993) C-fos expression in the pons and medulla of the cat during carbachol-induced active sleep. J Neurosci 13: –18.CrossRefGoogle ScholarPubMed
Yang, R. H., Hu, S. J., Wang, Y. . (2008) Paradoxical sleep deprivation impairs spatial learning and affects membrane excitability and mitochondrial protein in the hippocampus. Brain Res 1230: –32.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×