Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-16T22:35:51.386Z Has data issue: false hasContentIssue false

4 - Deterministic Rounding of Linear Programs

from I - An Introduction to the Techniques

Published online by Cambridge University Press:  05 June 2012

David P. Williamson
Affiliation:
Cornell University, New York
David B. Shmoys
Affiliation:
Cornell University, New York
Get access

Summary

In the introduction, we said that one of the principal theses of this book is the central role played by linear programming in the design and analysis of approximation algorithms. In the previous two chapters, we have not used linear programming at all, but starting with this chapter we will be using it extensively.

In this chapter, we will look at one of the most straightforward uses of linear programming. Given an integer programming formulation of a problem, we can relax it to a linear program. We solve the linear program to obtain a fractional solution, then round it to an integer solution via some process.

The easiest way to round the fractional solution to an integer solution in which all values are 0 or 1 is to take variables with relatively large values and round them up to 1, while rounding all other variables down to 0. We saw this technique in Section 1.3 applied to the set cover problem, in which we chose sets whose corresponding linear programming variables were sufficiently large. We will see another application of this technique when we introduce the prize-collecting Steiner tree problem in Section 4.4. We will revisit this problem several times in the course of the book. For this problem we give an integer programming relaxation in which there are 0-1 variables for both nodes and edges. We round up the node variables that are sufficiently large in order to decide which nodes should be spanned in a solution; we then find a tree spanning these nodes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×