Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-21T01:19:28.618Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 April 2011

Jay Schulkin
Affiliation:
Georgetown University, Washington DC
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Adaptation and Well-Being
Social Allostasis
, pp. 177 - 192
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, D. H., Keverne, E. B., Bercovitch, F. B., et al., (2002). Are subordinates always stressed?Hormones and Behavior, 54, 78–93.Google Scholar
Adolphs, R. (1999). Social cognition and the human brain. Trends in Cognitive Sciences, 3, 469–479.CrossRefGoogle ScholarPubMed
Adolphs, R., Denburg, N. L., and Tranel, D. (2001). The amygdala's role in long-term declarative memory for gist and detail. Behavioral Neuroscience, 115, 983–992.CrossRefGoogle ScholarPubMed
Adolphs, R., Gosselin, F., Buchanan, T. W., Tranel, D., Schyns, P., and Damasio, A.R. (2005). A mechanism for impaired fear recognition after amygdala damage. Nature, 433, 68–72.CrossRefGoogle ScholarPubMed
Aggleton, J. (1992/2000). The amygdala. Oxford: Oxford University Press.Google ScholarPubMed
Ahnert, L., Gunnar, M. R., Lamb, M. E., and Barthel, M. (2004). Transition to childcare: Associations with infant-mother attachment, infant negative emotion, and cortisol elevations. Child Development, 75, 639–650.CrossRefGoogle Scholar
Aiello, L. C, and Dunbar, R. I. M (1993). Neocortex size, group size, and the evolution of language. Current Anthropology, 34 (2), 184–193.CrossRefGoogle Scholar
Almond, R. E. A., Brown, G. R., and Keverne, E. B. (2006). Suppression of prolactin does not reduced infant care by parentally experimed male common marmosets. Hormones and Behavior, 49, 673–680.CrossRefGoogle ScholarPubMed
Aristotle, (1962). The nicomachean ethics. New York: Macmillan.Google Scholar
Arnold, A. P. (2002). Concepts of genetic and hormonal induction of vertebrate sexual differentiation in the twentieth centrury with special reference to the brain. In Pfaff, D. W., et al., (Eds.), Hormones, brain and behavior. New York: Elsevier Press.Google Scholar
Ball, G. F., and Balthazart, J. (2002). Neuroenocrine mechanisms regulating reproductive cycles and reproductive behavior in birds. In Pfaff, D. W. (Ed.), Hormones, brain and behavior. New York: Academic Press.Google Scholar
Barger, N., Stefanacci, L., and Semendeferi, K. (2007). A comparative volumetric analysis of the amygdaloid complex and basolateral division in the human and ape brain. American Journal of Physical Anthropology, 134, 392–403.CrossRefGoogle ScholarPubMed
Barker, D. J. (2004). The developmental origins of well-being. Phil. Trans. R. Soc. London. B, 359, 1359–1366.CrossRefGoogle ScholarPubMed
Baron-Cohen, S. (1995/2000). Mindblindness. Cambridge, MA: MIT Press.Google Scholar
Baron-Cohen, S., Lutchmaya, S., and Knickmeyer, R. (2004). Prenatal tesosterone in mind. Cambridge: MIT Press.Google Scholar
Barton, R. A. (2004). Binocularity and brain evolution in primates. PNAS, 101, 10113–10115.CrossRefGoogle ScholarPubMed
Bauman, D. E. (2000). Regulation of nutrient portioning during lactation: homeostasis and homeorhesis revisisted. In Cronje, P. J. (Ed.), Ruminant physiology. New York: CAB Publishing.Google Scholar
Beaton, E. A., Schmidt, L. A., Schulkin, J., Antony, M. M., Swinson, R. P., and Hall, G. B. (2008). Different neural responses to stranger and personally familiar faces in shy and bold adults. Behav Neurosci, 122, 704–9.CrossRefGoogle ScholarPubMed
Bechara, A. (2005). Decision-making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nature Neuroscience, 8, 1458–1463.CrossRefGoogle ScholarPubMed
Bentley, P. J. (1982). Comparative vertebrate endocrinology. Cambridge: Cambridge University Press.Google Scholar
Berntson, G. G., and Cacioppo, J. T. (2000). From homeostasis to allodynamic regulation. In J. T. Cacioppo, L. G. Tassinary, and G. G. Berntson (Eds), Handbook of psychophysiology. Cambridge: Cambridge University Press.Google Scholar
Berridge, K. C. (2007). The debate over dopamine's role in reward: The case for incentive salience. Physiology and Behavior, 191, 391–431.Google ScholarPubMed
Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology and Behavior, 81, 179–209.CrossRefGoogle ScholarPubMed
Berridge, K. C., Grill, H.J., and Norgren, R. (1981). The relation of consummatory resopnses and preabsorptive insulin release to palatability and learned taste aversions. Journal of Comparative and Physiological Psychology, 95, 363–382.CrossRefGoogle ScholarPubMed
Bindra, D. (1974). A motivational view of learning, performance, and behavior modification. Psychological Review, 81, 199–213.CrossRefGoogle ScholarPubMed
Bodnar, R. J., Commons, K., and Pfaff, D. W. (2002). Central neural states relating sex and pain. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., and Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychol Rev, 108, 624–52.CrossRefGoogle ScholarPubMed
Bridges, R. S., and Mann, P. E. (1994). Prolactin-brain interactions in the induction of maternal behavior in rats. Psychoneuroendocrinology, 19(5–7), 611–622.CrossRefGoogle ScholarPubMed
Broca, P. (1878). Anatomic comparee des ciconvolutions le grad lbe limbique et la scissure limbique dans la serie des mammiferes. Review of Anthropology, 1, 385–498.Google Scholar
Brown, P., and Marsden, C. D. (1998). What do the basal ganglia do?The Lancet, 351, 1801–1804.CrossRefGoogle Scholar
Buntin, J. D., Ruzycki, E, and Witebsky, J. (1992). Prolactin receptors in dove brain: Autoradiographic analysis of binding characteristics in discrete brain regions and accessibility to blood-borne prolactin. Neuroendocrinology, 57, 738–750.CrossRefGoogle Scholar
Burkhardt, R.W. (1975/1997). Lamarck and evolutionary biology. Cambridge, MA: Harvard University Press.Google Scholar
Byrne, R. W. and Bates, L. A. (2007). Sociality, evolution and cognition. Current Biology, 17, R714–R723.CrossRefGoogle ScholarPubMed
Byrne, R. W., and Corp, N. (2004). Neocortex size predicts deception rate in primates. Proc. R. Soc. 271, 1693–1699.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Hawkley, L., and Ernst, J. M., et al. (2006). Loneliness within a nomological net: an evolutionary perspective. Joural of Research in Personality, 40, 1054–1085.CrossRefGoogle Scholar
Cacioppo, J. T., Visser, P. S., and Pickett, C. L. (2006). Social neuroscience. Cambridge: MIT Press.Google Scholar
Cajal, S. R. (1906). The structure and connexions of neurons. In Nobel Lectures, Physiology or Medicine 1901–1921. New York: Elsevier, 220–253.Google Scholar
Cannon, W. B. (1916/1929). Bodily changes in pain, hunger, fear and rage. New York: Appleton and Co.Google Scholar
Carey, S. (2009). The origin of concepts. Oxford: Oxford University Press.CrossRefGoogle Scholar
Carter, C. S. (2007). Sex differences in oxytocin and vasopressin: implications for autism spectrum disorders?Behavioural Brain Research, 176, 170–186.CrossRefGoogle ScholarPubMed
Carter, C. S., Lederhendler, I. L., and Kirkpatrick, B. (1997/1999). The integrative neurobiology of affiliation. Cambridge, MA: MIT Press.Google ScholarPubMed
Cavigelli, S. A., Dubovick, T., Levash, W., Jolly, A., and Pitts, A. (2003). Female dominance status and fecal corticoids in a cooperative breeder with low reproductive skew: ring-tailed lemurs. Hormones and Behavior, 43, 166–179.CrossRefGoogle Scholar
Charuvastra, A., and Cloitre, M. (2008). Social bonds and posttraumatic stress disorder. Annu Rev Psychol, 59, 301–328.CrossRefGoogle ScholarPubMed
Chauvet, J., Hurpet, D., Michel, G., Chauvet, M. T., Carrick, F. N., and Acher, R. (1985). The neurohypophysial hormones of the egg-laying mammals: identification of arginine vasopressin in the platypus (Ornithorhynchus anatinus). Biochem Biophys Res Commun, 127, 277–282.CrossRefGoogle Scholar
Cheney, D. L., and Seyfarth, R. M. (1990). How monkeys see the world. Chicago, IL: University of Chicago Press.Google Scholar
Cheney, D. L., and Seyfarth, R. M. (2007). Baboon metaphysics. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Choleris, E., Ogawa, S., Kavaliers, M., Gustafsson, J. A., Korach, K. S., Muglia, L. J., and Pfaff, D. W. (2006). Involvement of estrogen receptor alpha, beta and oxytocin in social discrimination: A detailed behavioral analysis with knockout female mice. Genes Brain Behav, 5, 528–539.CrossRefGoogle ScholarPubMed
Connor, R. C. (2007). Dolphin social intelligence: Complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philos Trans R Soc Lond B Biol Sci, 362, 587–602.CrossRefGoogle Scholar
Cook, C.J. (2002). Glucocorticoid feedback increases the sensitivity of the limbic system to stress. Physiol. Behav. 75: 455–464.CrossRefGoogle ScholarPubMed
Craig, W. (1918). Appetites and aversions as constituents of instincts. The Biological Bulletin 34, 91–107.CrossRefGoogle Scholar
Crews, D. (2008). Epigenetics and its implications for behavioral endocrinology. Front in Neuroend, 29, 344–357.CrossRefGoogle Scholar
Crockett, M. J., Clark, L., Tabibnia, G., Lieberman, M. D., and Robbins, T. W. (2008). Serotonin modulates behavioral reactions to unfairness. Science, 320, 1739.CrossRefGoogle ScholarPubMed
Curley, J. P., and Keverne, E. B. (2005). Genes, brains and mammalian social bonds. Trends Ecol Evol, 20, 561–567.CrossRefGoogle ScholarPubMed
Dallman, M. F., Akana, S. F., Cascio, C. S., Darlington, D. N., Jacobson, L., and Levin, N. (1987). Regulation of ACTH secretion: Variations on a theme of B. Rec Prog Horm Res, 43, 113–173.Google ScholarPubMed
Dallman, M. F., Pecoraro, N., Akana, S. F., et al. (2003). Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci, 100, 11696–11701.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London, 354, 1413–1420.CrossRefGoogle Scholar
Damasio, A. R., Tranel, D., and Damasio, A. R. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioral Brain Research, 41, 81–94.CrossRefGoogle ScholarPubMed
Darwin, C. (1859/1958). The origin of species. New York: Mentor Book.Google Scholar
Darwin, C. (1874). The Descent of Man and Selection in Relation to Sex. 2nd edn. Reprinted 1896, New York: D. Appleton & Co.CrossRefGoogle Scholar
Davidson, R. J., Kabat-Zinn, J., Schumacher, J., et al., (2003). Alterations in brain and immune function produced by mindfulness meditation. Psychosomatic Medicine, 65, 564–570.CrossRefGoogle ScholarPubMed
Davis, M., Walker, D. L., and Lee, Y. (1997). Amygdala and bed nucleus of the stria terminalis: Differential roles in fear and anxiety measured with the acoustic startle reflex. Philos Trans R Soc Lond B Biol Sci, 352, 1675–1687.CrossRefGoogle ScholarPubMed
Davis, M., Walker, D. L., Miles, L., and Grillon, C. (2010). Phasic vs. sustained fear in rats and humans: Role of the extended amygdala in fear vs. anxiety. Neuropsychopharmacology, 35, 105–135.CrossRefGoogle Scholar
Kloet, E.R. (1991). Brain corticosteroid receptor balance and homeostatic control. Front Neuroendocrinol, 12, 95–164.Google Scholar
Kloet, E. R., Jeols, M., and Holsboer, F. (2005). Stress and the brain: From adaptation to desease. Nature, 6, 463–472.Google Scholar
Vries, D.J. and Miller, M.A. (1998). Anatomy and function of extrahypothalamic vasopressin systems in the brain. Progress in Brain Research, 119, 3–20.CrossRefGoogle Scholar
Waal, F., and Lanting, F. (1997). Bonobo: The forgotten ape. Berkeley, CA: University of California Press.Google Scholar
Delgado, M. R., Nearing, K. I., LeDoux, J. E., and Phelps, E. A. (2008). Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron, 11, 829–838.CrossRefGoogle Scholar
Denton, D. (2005). The primordial emotions. Oxford: Oxford University Press.Google Scholar
Denton, D. (1982). The hunger for salt. Berlin: Springer-Verlag.Google Scholar
Denver, R. J. (1998). Hormonal correlates of environmentally induced metamorphosis in the western spadefoot toad, Scaphiopus hammondii. General and Comparative Endocrinology, 110, 326–336.CrossRefGoogle ScholarPubMed
Denver, R. J. (2009). Endocrinology of complex life cycles: amphibians. In D. Pfaff, A. Arnold, A. Etgen, S. Fahrbach, R. Moss and R. Rubin (Eds), Hormones, brain and behavior, 2nd edn. Amsterdam: Elsevier.Google Scholar
Dethier, V. G., and Stellar, E. (1961/1970). Animal behavior. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Dewey, J. (1925/1989). Experience and nature. LaSale, IL: Open Court Press.Google Scholar
Diamond, A. (2001). A model system for studying the role of dopamine in the prefrontal cortex during early development of humans: early and continuously treated phenylketonuria. In Nelson, C. A. and Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience. Cambridge, MA: MIT Press, 433–472.Google Scholar
Diamond, A., and Amaso, D. (2008). Contributions of neuroscience to our understanding of cognitive development. Curr Dir Psychol Sci, 17, 136–141.CrossRefGoogle ScholarPubMed
Dingle, H. (2002). Hormonal mediation of insect life histories. In Pfaff, D. W., et al., (Eds.), Hormones, brain and behavior. New York: Elsevier.Google Scholar
Dixson, A. F., and George, L. (1982). Prolactin and parental behaviour in a male New World primate. Nature, 299, 551–553.CrossRefGoogle Scholar
Dobzhansky, T. C. (1962). Mankind evolving. New Haven, CT: Yale University Press.Google Scholar
Dolan, R. (2007). The human amygdala and orbital prefrontal cortex in behavioral regulation. Phil Trans R Soc, 362, 787–789.CrossRefGoogle Scholar
Donald, M. (1991). Origins of the modern mind. Cambridge, MA: Harvard University Press.Google Scholar
Donaldson, Z. R., and Young, L. J. (2008). Oxytocin, vasopressin and the neurogenetics of sociality. Science, 322, 900–904.CrossRefGoogle ScholarPubMed
Donley, M. P., Schulkin, J., and Rosen, J. B. (2005). Glucocorticoid receptor antagonism in the basolateral amygdala and ventral hippocampus interferes with long-term memory of contextual fear. Behavioural Brain Research, 164, 197–205.CrossRefGoogle ScholarPubMed
Drago, F., D'Agata, V., Iacona, T., et al. (1989). Prolactin as a protective factor in stress-induced biological changes. Journal of Clinical Laboratory Analysis, 3, 340–344.CrossRefGoogle ScholarPubMed
Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. J Hum Evol, 22, 469–493.CrossRefGoogle Scholar
Dunbar, R. I. M. (1996). Grooming, gossip, and the evolution of language. Cambridge, MA: HarvardUniversity Press.Google Scholar
Dunbar, R. I. M. (2003). The social brain. Annual Review of Anthropology, 32, 163–181.CrossRefGoogle Scholar
Dunbar, R. I. M., and Shultz, S. (2007). Evolution in the social brain. Science, 317, 1344–1347.CrossRefGoogle ScholarPubMed
Eldridge, N. (1985). Unfinished synthesis. Oxford: Oxford University Press.Google Scholar
Emery, N. J. and Amaral, D. G. (2000). The role of the amygdale in primate social cognition. In R. D. Lane and L. Nadel (Eds), Cognitive neuroscience of emotion. New York: Oxford University Press.Google Scholar
Engh, A. L., Beehner, J. C., Bergman, T. J., et al., (2006). Female hierarchy instability, male immigration and infanticide increase glucocorticoid levels in female chacma baboons. Animal Behavior, 71, 1227–1337.CrossRefGoogle Scholar
Epstein, A. N. (1991). Neurohormonal control of salt intake in the rat. Brain Research Bulletin, 27, 315–320.CrossRefGoogle ScholarPubMed
Erickson, K., Drevets, W. C., and Schulkin, J. (2003). Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neuroscience and Biobehavioral Reviews, 27, 233–246.CrossRefGoogle ScholarPubMed
Erickson, K., Gabry, K. E., Lindell, S., et al. (2005). Social withdrawal behaviors in nonhuman primates and changes in neuroendocrine and monoamine concentrations during a separation paradigm. Dev Psychobiol, 46, 331–339.CrossRefGoogle ScholarPubMed
Erickson, K., Thorsen, P., Chrousos, G., Grigoriadis, D. E., Khongsaly, O., and Schulkin, J. (2001). Preterm birth: associated neuroendocrine, medical and behavioral risk factors. Clinical Endocrinology and Metabolism, 86, 2544–2552.Google ScholarPubMed
Evans, P. D., Mekel-Bobrov, N., Vallender, E. J., Hudson, R. R., and Lahn, B. T. (2006). Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage. Proc Natl Acad Sci USA, 103, 18178–18183.CrossRefGoogle ScholarPubMed
Febo, M., Numan, M., and Ferris, C. F. (2005). Functional magnetic resonance imaging shows oxytocin activates barin regions associated with mother-pup bonding during suckling. Journal of Neuroscience, 25, 11637–11644.CrossRefGoogle Scholar
Ferguson, J. N., Young, L. J., Hearn, E. F., Matzuk, M. M., Insel, T. R., and Winslow, J. T. (2000) Social amnesia in mice lacking the oxytocin gene. Nature Genetics, 25, 284–288CrossRefGoogle ScholarPubMed
Ferguson, J. N., Aldag, J. M., Insel, T. R., and Young, L. J. (2001). Oxytocin in the medial amygdala is essential for social recognition in the mouse. J of Neuroscience, 21, 8278–8265.CrossRefGoogle ScholarPubMed
Festinger, L. (1957). A theory of cognitive dissonance. Palo Alto: Stanford University Press.Google Scholar
Fitzsimons, J. T. (1979). The physiology of thirst and sodium appetite. Cambridge: Cambridge University Press.Google ScholarPubMed
Fliessbach, K., Weber, B., Trautner, P., Dohmen, T., Sunde, U., Elger, C. E., and Falk, A. (2007). Social comparison affects reward-related brain activity in the human ventral striatum. Science, 318, 1305–1308.CrossRefGoogle ScholarPubMed
Foley, R. (2006). The emergence of culture in the context of hominin evolutionary patterns. In Levinson, S. C. and Jaisson, P. (Eds.), Evolution and culture. Cambridge, MA: MIT Press.Google Scholar
Foley, R., and Lahr, M. M. (2004). Human evolution writ small. Nature, 431, 1043–1044,Google Scholar
Francis, D. D., Diorio, J., Liu, D., and Meaney, M. J. (1999). Nongenomic transmission across generations of meternal behavior and stress responses in the rat. Science, 286, 1155–1158.CrossRefGoogle Scholar
Francis, D. D., Young, L. J., Meaney, M. J., and Insel, T. R. (2002). Naturally occurring differences in maternal care are associated with the expression of oxytocin and vasopression (V1a) receptors: Gender differences. J of Neuroendocrinology 14, 349–353.CrossRefGoogle Scholar
Frederick, S., and Loewenstein, G. (1999). Hedonic adaptation. In Kahneman, D., Diener, E., and Scharz, N. (Eds.), The foundations of hedonic psychology. New York: Russell Sage Foundation.Google Scholar
Fried, L. P., Carlson, M. C., Freedman, M., Frick, K. D., Glass, T. A., Hill, J., et al. (2004). A social model for health promotion for aging population. J. of Urban Health: Bulletin of the New York Academy of Medicine, 81, 64–77.CrossRefGoogle ScholarPubMed
Frim, D. M., Emanuel, R. L., Robinson, B. G., Smas, C. M., Adler, G. K., and Majzoub, J. A. (1988). Characterization and gestational regulation of corticotropin-releasing hormone messenger RNA in human placenta. J Clin Invest, 82, 287–292.CrossRefGoogle ScholarPubMed
Frith, C. D. (2007) The social brain?Philos Trans R Soc Lond B Biol Sci, 362, 671–678.CrossRefGoogle ScholarPubMed
Galef, B. G., and Whiskin, E. E. (2000). Social influences on the amount of food eaten by Norway rats. Appetite, 34, 327–332.CrossRefGoogle ScholarPubMed
Gallagher, M., and Holland, F. C. (1994). The amygdala complex: Multiple roles in associative learning and emotion. Proc. Of the Nat. Acad. Of Sci., 91, 11771–11776.CrossRefGoogle Scholar
Gallistel, C. R. (1980). The organization of action: A new synthesis. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Garcia, V., Jouventin, P., and Mauget, R. (1996). Parental care and the prolactin secretion pattern in the king penguin. Hormones and Behavior, 30, 259–265.CrossRefGoogle ScholarPubMed
Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.Google Scholar
Gigerenzer, G. (2000). Adaptive thinking, rationality in the real world. New York: Oxford University Press.Google Scholar
Gluckman, P., and Hanson, M. (2005). The fetal matrix. Cambridge: Cambridge University Press.Google Scholar
Goland, R. S., Wardlaw, S. L., Stark, R. I., Brown, L. S., and Frantz, A. G. (1986). High levels of corticotropin-releasing hormone immunoreactivity in maternal and fetal plasma during pregnancy. J Clin Endocrinol Metab, 63, 1199–1204CrossRefGoogle Scholar
Goldman-Rakic, P. S., Leranth, C., Williams, S. M., Mons, N., and Gerrard, M. (1989) Dopamine synaptic complex with pyradidal neurons in primate cerebral cortex. Proc. Nat. Acad. Sci., 86, 9015–9019.CrossRefGoogle ScholarPubMed
Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A., and Fuchs, E. (1996). Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci, 17, 2492–2498.CrossRefGoogle Scholar
Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.Google Scholar
Goymann, W., and Wingfield, J. C. (2004). Allostatic load, social status and stress hormones: the costs of social status matter. Animal Behaviour, 67, 591–602.CrossRefGoogle Scholar
Greene, J. D., Morelli, S. A., Kowebgerg, K., et al., (2008). Cognitive load selectively interferes with utilitarian moral judgment. Cognition, 107, 1144–1154.CrossRefGoogle ScholarPubMed
Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., and Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44, 389–400.CrossRefGoogle ScholarPubMed
Greene, J.D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., and Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293, 2105–2108,CrossRefGoogle ScholarPubMed
Griffin, D. R. (1958). Listening in the dark. New Haven, CT: Yale University Press.Google Scholar
Gubernick, D. J., Winslow, J. T., Jensen, P., Jeanotte, L., and Bowen, J. (1995). Oxytocin changes in males over the reproductive cycle in the monogamous, biparental California mouse, Peromyscus californicus. Horm Behav, 29, 59–73.CrossRefGoogle ScholarPubMed
Gunnar, M. R., and Davis, E. P. (2001). The developmental psychobiology of stress and emotion in early childhood. In Lerner, R. M., Easterbrooks, M. A., and Mistry, J. (Eds.), Comprehensive handbook of psychology, vol 6, Developmental psychology. New York: Wiley.Google Scholar
Gunnar, M. R., Mangelsdorf, S., Larson, M., and Hertsgaard, L. (1989). Attachment, temperament, and adrenocortical activity in infancy: a study of psychoendocrine regulation. Development Psychology, 25, 355–363.CrossRefGoogle Scholar
Gunterkun, O. (2005). The avian ‘prefrontal cortex’ and cognition. Curr Opin Neurobiol, 15, 686–693.CrossRefGoogle Scholar
Hammock, E. A., and Young, L. J. (2004). Functional microsatellite polymorphism associated with divergent social structure in vole species. Mol Biol Evol, 21, 1057–1063.CrossRefGoogle ScholarPubMed
Hariri, A. R., Mattay, V. S., Tessitore, A., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400–403.CrossRefGoogle ScholarPubMed
Heckel, G., and Fink, S. (2008). Evolution of the arginine vasopressin 1a receptor and implications for mammalian social behavior. Progress in Brain Research, 170, 321–330.CrossRefGoogle Scholar
Heinrichs, M., Baumgartner, T., Kirschbaum, C., and Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry, 54, 1389–1398.CrossRefGoogle ScholarPubMed
Herbert, J. (1993). Peptides in the limbic system: neurochemical codes for co-ordinated adaptive responses to behavioral and physiological demand. Prog Neurobiol, 41, 723–791.CrossRefGoogle ScholarPubMed
Herbert, J., and Schulkin, J. (2002). Neurochemical coding of adaptive responses in the limbic system. In Pfaff, D. (Ed.), Hormones, brain and behavior. New York: Elsevier.Google Scholar
Herman, J. P., Dolgas, C. M., and Carlson, S. L. (1998). Ventral subiculum regulates hypothalamic-pituitary-adrenocortical and behavioral responses to cognitive stressors. Neuroscience, 86, 449–459.CrossRefGoogle Scholar
Herman, J. P., Figueiredo, H., Nueller, N. K., et al. (2003). Central mechanisms of stress integration. Frontiers in Neuroendocrinology, 24, 151–180.CrossRefGoogle ScholarPubMed
Herrick, C. J. (1926/1963). Brain in rats and men. New York: Hafner Publishers.Google Scholar
Hermann, E., Call, J., Hernadez-Lioreda, M. V.et al., (2007) Humans have evolved specialized skills of social cognition. Science 317, 1360–1366.CrossRefGoogle Scholar
Hofer, M. A. (1973). The role of nutrition in the physiological and behavioral effects of early maternal separation on infant rats. Psychosom Med, 35, 350–359.CrossRefGoogle ScholarPubMed
Hollander, E., Novotny, S., Hanratty, M., Yaffe, R., DeCaria', C. M., Aronowitz, B. R., and Mosovich, S. (2003). Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger's disorders. Neuropsychopharmacology, 28, 193–198.CrossRefGoogle ScholarPubMed
Holliday, R., and Ho, T. (1998). Evidence for gene silencing by endogenous DNA methylation. Proc Natl Acad Sci USA, 95, 8727–8732.CrossRefGoogle ScholarPubMed
Hume, D. (1984). A treatise of human nature. New York: Penguin Classics. (Original work published 1739.)Google Scholar
Insel, T. R. (1992). Oxytocin-a neuropeptide for affiliation: Evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology, 17, 3–35.CrossRefGoogle Scholar
Isomura, Y., Ito, U., Akazawa, T., Nambu, A., and Takada, M. (2003). Neural coding of ‘attention for action’ and ‘response selection’ in primate anterior cingulated cortex. Journal of Neuroscience, 23, 8002–8012.CrossRefGoogle Scholar
Jackson, J. H. (1884/1958). Evolution and disollution of the nervous system. In: Selected Writings of John Hughlings Jackson. London: Staples Press.Google Scholar
Jacobowitz, D. M. (1988). Multifactorial control of pituitary hormone secretion: The “wheels” of the brain. Synapse, 2, 86–92.CrossRefGoogle Scholar
James, W. (1890/1952). The principles of psychology. New York: Dover Press.Google Scholar
Jasnow, A. M., Schulkin, J., and Pfaff, D. W. (2006). Estrogen facilitates fear conditioning and increases CRH mRNA expression in the central nucleus of the amygdala. Hormones and Behavior 49, 197–205.CrossRefGoogle Scholar
Jaspers, K. (1913/1997). General psychopathology, Vol. I and II. (Hoenig, J. and Hamilton, M. W., Trans.). Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Jolly, A. (1999). Lucy's legacy. Cambridge: Harvard University Press.Google Scholar
Kagan, J. (1984). The nature of the child. New York: Basic Books.Google Scholar
Kagan, J. (2002). Surprise, uncertainty and mental structure. Cambridge, MA: Harvard University Press.Google Scholar
Kagan, J., Resnick, J. S., and Snidman, N. (1988). Biological bases of childhood shyness. Science, 240, 167–171.CrossRefGoogle ScholarPubMed
Kahneman, D., Diener, E., and Schwarz, N. (1999). Well being: The foundations of hedonic psychology. New York: Russell Sage Foundation.Google Scholar
Kalin, N. H., Larson, C., Shelton, S. E., and Davidson, R. J. (1998). Asymmetric frontal brain activity, cortisol, and behavior associated with fearful termperament in rhesus monkeys. Behav Neurosci, 112, 286–292.CrossRefGoogle Scholar
Kant, I. (1792/1951). Critique of judgment. New York: Hafner Press.Google Scholar
Keverne, E. B., and Curley, J. P. (2008). Epigenetics, brain evolution and behaviour. Front Neuroendocrinol, 29, 398–412.CrossRefGoogle ScholarPubMed
Keverne, E. B. (2004). Brain evolution, chemosensory processing, and behavior. Nutr Rev, 62, S218–223; discussion S224–41.CrossRefGoogle ScholarPubMed
Keverne, E. B., and Curley, J. P. (2004). Vasopressin, oxytocin and social behavior. Curr Opinion in Neurobiology, 14, 777–783.CrossRefGoogle Scholar
King, B. C., and Nicholson, R. C. (2007) Advances in understanding CRH gene expression. Frontiers in Bioscience, 12, 581–590.CrossRefGoogle Scholar
Kirsch, P., Esslinger, C., Chen, Q., et al. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci, 25, 11489–11493.CrossRefGoogle ScholarPubMed
Kluver, H. M., and Bucy, P. C. (1939). Preliminary analysis of functions of the temporal lobes in monkeys. Archives of Neurology & Psychiatry, 42, 979–1000.CrossRefGoogle Scholar
Koenigs, M, Young, L, et al., (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446, 7138, 908–911.CrossRefGoogle ScholarPubMed
Koob, G. F., and LeMoal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychophamacology, 24, 94–129.Google Scholar
Koob, G. F., and LeMoal, M. (2005). Neurobiology of addiction. New York: Elsevier.Google Scholar
Korte, S. M., Koolhaas, J. M., Wingfield, J. C., and McEwen, B. S. (2004). The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neuroscience and Biobehavioral Reviews, 29, 3–38.CrossRefGoogle ScholarPubMed
Kosfeld, M., Heinrichs, M., Zak, P.J., Fischbacher, U. and Fehr, E. (2005). Oxytocin increases trust in humans. Science, 435, 673–676.Google ScholarPubMed
Krieckhaus, E. E., and Wolf, G. (1968). Interaction of innate mechanisms and latent learning. Journal of Comparative and Physiological Psychology, 65, 197–201.CrossRefGoogle ScholarPubMed
Kuhn, C. M., Pauk, J., and Schanberg, S. M. (1990). Endocrine responses to mother-infant separation in developing rats. Dev Psychobiol, 23, 395–410.CrossRefGoogle ScholarPubMed
Lakoff, G., and Johnson, M. (1999). Philosophy in the Flesh. New York: Basic Books.Google Scholar
Lashley, K. S. (1951). The problem of serial order in behavior. In L.A. Jeffress (Ed.), Cerebral mechanisms in behavior. Wiley, New York, 112–131.Google Scholar
LeDoux, J. E. (1995). The emotional brain. New York: Simon & Schuster.Google Scholar
Lehrman, , (1958). Induction of broodiness by participation in courtship and nest-building in the ring dove. J comp Physiol Psychol, 51, 32–36.CrossRefGoogle Scholar
Lim, M. M., and Young, L. J. (2006). Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Hormones and Behavior, 50, 506–517.CrossRefGoogle ScholarPubMed
Lind, R. W., Swanson, L. W., and Ganten, D. (1985). Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study. Neuroendocrinology, 40, 2–24.CrossRefGoogle ScholarPubMed
Liu, Y., and Wang, Z. X. (2003). Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience, 121, 537–544.CrossRefGoogle ScholarPubMed
Lovejoy, D. A., and Jahan, S. (2006). Phylogeny of corticotrophin-releasing factor family of peptides in the metazoan. General & Comparative Endocrinology, 146, 1–8.CrossRefGoogle Scholar
Lupien, S. J., Maheu, F., Tu, M., Fiocco, A., and Schramek, T. E. (2007). The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain & Cognition, 65: 209–237.CrossRefGoogle ScholarPubMed
Lyell, C. (1830–1833/1997). Principles of geology. New York: Penguin Books.Google Scholar
Maclean, P.D. (1990). The triune brainin evolution. New York: Plenium Press.Google Scholar
Maess, B., Koelsch, S., Gunter, T. C., and Friederici, A. D. (2001). Musical syntax is processed in Broca's area. Nature Neuroscience, 4 (5), 540–545.CrossRefGoogle ScholarPubMed
Makino, S., Gold, P. W., and Schulkin, J. (1994 a/b). Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nuclues of the hypothalamus and Effects of corticosterone on CRH mRNA and content in the bed nucleus of the amygdala and the paraventricular nucleus of the hypothalamus. Brain Res, 640, 105–112, 141–149.CrossRefGoogle Scholar
Malthus, T. R. (1798/1970). An essay on the principle of population. Baltimore, MD: Penguin Books.Google Scholar
Marler, C. A., Chu, J., and Wilczynski, W. (1995). Arginine vasotocin injection increases probability of calling in cricket frogs, but causes call changes characteristic of less aggressive males. Horm Behav, 29, 554–570.CrossRefGoogle ScholarPubMed
Marler, P. (1961). The logical analysis of animal communication. J of Theoretical Biology, 1, 295–317.CrossRefGoogle ScholarPubMed
Marler, P., and Hamilton, W. J. (1966). Mechanisms of animal behavior. New York: Wiley.Google ScholarPubMed
Marler, P., Peters, S., Ball, G. F., Duffy, A. M., Jr. and Wingfield, J. C. (1988). The role of sex steroids in the acquisition and production of birdsong. Nature, 336, 770–772.CrossRefGoogle ScholarPubMed
Martin, A., Wiggs, C. L., Ungerleider, L. G., and Haxby, J. V. (1996). Neural correlates of category specific knowledge. Nature, 379, 649–652.CrossRefGoogle ScholarPubMed
Mayr, E. (1963). Animal species and evolution. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Mayr, E. (1991). One long argument. Cambridge, MA: Harvard University Press.Google Scholar
McCarthy, M. M. (2008). Estradiol and the developing brain. Physiol Rev, 88, 91–134.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1995). Steroid actions on neuronal signalling. Ernst Schering Research Foundation Lecture Series, 27, 1–45.Google Scholar
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New Engl J Med, 338, 171–179.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2006). Sleep deprivation as a neurobiologic and physiologic stressor: Allostasis and allostatic load. Metabolism, 55, S20-S23.CrossRefGoogle ScholarPubMed
McEwen, B. S. and Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43, 2–15.CrossRefGoogle ScholarPubMed
McGaugh, J. L. (2000). Memory – A century of consolidation. Science, 287, 248–251.CrossRefGoogle ScholarPubMed
McHenry, H. M. (2009). Human evolution. In M. Ruse and J. Travis (Eds), Evolution: The First Four Billion Years. Harvard University Press, Cambridge, Massachusetts, 256–280.Google Scholar
Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci, 24, 1161–1192.CrossRefGoogle Scholar
Mellars, P. (2006). Going east: new genetic and archaeological perspectives on the modern human colonization of Eurasia. Science, 313, 796–800.CrossRefGoogle ScholarPubMed
Meltzoff, A. N. and Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198, 75–78.CrossRefGoogle ScholarPubMed
Merali, Z., Anisman, H., James, J.S., Kent, P., and Schulkin, J. (2008). Effects of corticosterone on CRH and gastrin-releasing peptide release in response to an aversive stimulus in two regions of the forebrain. Eur J of Neurosci, 28, 165–172.CrossRefGoogle Scholar
Mercer, J.G., Lawrence, C.B., and Atkinson, T. (1996) Hypothalamic NPY and CRF gene-expression in the food-deprived Syrian hamster. Physiology and Behavior, 60: 121–127.CrossRefGoogle ScholarPubMed
Milgram, S. (1974), Obedience to authority; an experimental view. London: HarperCollins.Google Scholar
Mithen, S. (1996). The prehistory of the mind. London: Thames and Hudson.Google Scholar
Mithen, S. (2006) The singing neanderthals: the origins of music, language, mind, and body. Cambridge, MA: Harvard University Press.Google Scholar
Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A., and Chattarji, S. (2005). Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. PNAS, 102, 9371–9376.CrossRefGoogle ScholarPubMed
Moll, J., and Schulkin, J. (2009). Social attachment and aversion in human moral cognition. Neuroscience and biobehavioral reviews, 33(3), 456–465CrossRefGoogle ScholarPubMed
Moore, F. L., and Orchinik, M. (1991). Multiple molecular action for steroids in the regulation of reproductive behaviors. Sem in the Neurosci, 3, 489–496.CrossRefGoogle Scholar
Moore, F. L., and Rose, J. D. (2002). Sensorimotor processing model. In Pfaff, D. W., et al., (Eds.), Hormones, brain and behavior. New York: Academic Press.Google Scholar
Moore-Ede, M. C. (1986). Physiology of the circadian timing system: Predictive versus reactive homeostasis. Am J Physiol, 250, R737–R752.Google ScholarPubMed
Moreno, J. (1995). Deciding together: bioethics and moral consensus. Oxford: Oxford University Press.Google Scholar
Morgan, M., and LeDoux, J. E. (1995). Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear. Behavioral Neuroscience, 109 681–688.CrossRefGoogle ScholarPubMed
Morris, J. S., Frith, C. D., Perrett, D. I., et al. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383, 812–815.CrossRefGoogle Scholar
Mota, M. T., and Sousa, M. B. C. (2000). Prolactin levels of fathers and helpers related to alloparental care in common marmosets, Callithrix jacchus. Folia Primatology, 71, 22–26.CrossRefGoogle ScholarPubMed
Mrosovsky, N. (1990). Rheostasis: The physiology of change. New York: Oxford University Press.Google Scholar
Myers, D. A., Gibson, M., Schulkin, J., and Greenwood-Van-Meerveld, B. (2005). Corticosterone implants to the amygdala and type 1 CRH receptor regulation: Effects on behavior and colonic sensitivity. Behavioural Brain Research, 161, 39–44.CrossRefGoogle ScholarPubMed
Nauta, W. J. H. (1972). The central visceromotor system: A general survey. In Hockman, C. H. (Ed.), Limbic system mechanisms and autonomic function. Springfield, IL: Charles C. Thomas.Google Scholar
Nelson, E., and Panksepp, J. (1998). Brain substrates of infant-mother attachment: Contributions of opioids, oxytocin, and norepinepherine. Neuroscience and Biobehavioral Reviews, 22, 437–452.CrossRefGoogle Scholar
Nemeroff, C. B., Krishnan, K. R., Reed, D., Leder, R., Beam, C., and Dunnick, N. R. (1992). Adrenal gland enlargement in major depression: A computed tomographic study. Arch Gen Psychiatry, 49, 384–387.CrossRefGoogle ScholarPubMed
Nephew, B. C., and Bridges, R. S. (2008). Arginine vasopressin V1a receptor antagonist impairs maternal memory in rats. Physiology and Behavior, 95, 182–186.CrossRefGoogle ScholarPubMed
Neuman, I. D. (2008). Brain oxytocin: A key regulator of emotional and social behaviours in oth females and males. Journal of Neuroendocrinology, 20, 858–865.CrossRefGoogle Scholar
Newman, S. W. (2002). Pheromone signaling access the medial extended amygdala. In D. W. Pfaff et al. (Eds.), Hormones, brain and behavior. New York: Academic Press.Google Scholar
Nicholson, R. C., King, B. R., and Smith, R. (2004). Complex regulatory interactions control CRH gene expression. Frontiers in Bioscience, 9, 32–39.CrossRefGoogle ScholarPubMed
Norgren, R. (1995). Gustatory system. In The rat nervous system, 2nd edn. San Diego, CA: Academic Press, 751–771.Google Scholar
Nottebohm, F. (1994). The song circuits of the avian brain as a model system in which to study vocal learning, communication and manipulation. Discussions in Neurosciences, 10, 72–81.Google Scholar
O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., and Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452–455.CrossRefGoogle Scholar
Oftedal, O. T. (2002). The mammary gland and its origin during synapsid evolution. J of Mamm Gland Biol and Neoplasia, 7, 225–252.CrossRefGoogle ScholarPubMed
Olazabal, D. E., and Young, L. J. (2006). Species and individual differences in juvenile female alloparental care are associated with oxytocin receptor density in the striatum and the lateral septum. Hormones and Behavior, 49, 681–687.CrossRefGoogle ScholarPubMed
Pecina, S., Schulkin, J., and Berridge, K. C. (2006). Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: Paradoxical positive incentive effects in stress?BMC Biol, 4, 8.CrossRefGoogle ScholarPubMed
Petrovic, P., Kalisch, R., Singer, T., and Dolan, R. J. (2008). Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J Neurosci, 28, 6607–6615.CrossRefGoogle ScholarPubMed
Pfaff, D. W. (1980). Estrogens and brain function. New York: Springer-Verlag.CrossRefGoogle Scholar
Pfaff, D. W. (1999). Drive. Cambridge, MA: MIT Press.Google Scholar
Phillips, M. L, Young, A. W., Scott, S.K., et al. (1998). Neural responses to facial and vocal expressions of fear and disgust. Proceedings of the Royal Society, 265, 1809–1817.CrossRefGoogle ScholarPubMed
Pinker, S. (1994). The language instinct. New York: William Morrow and Co.CrossRefGoogle Scholar
Porges, S. W. (1995). Orienting in a defensive world. Psychophysiology, 32, 301–318.CrossRefGoogle Scholar
Porges, S. W. (2003). Social engagement and attachment: a phylogenetic perspective. Ann New York Acad Sci, 1008, 31–47.CrossRefGoogle ScholarPubMed
Power, M. L., and Schulkin, J. (2006). Functions of CRH in anthropoid primates: From brain to placenta. Am J of Human Biology, 18, 431–447.CrossRefGoogle ScholarPubMed
Power, M. L. and Schulkin, J. (2009). Evolution of obesity. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Powley, T.L. (1977). The ventromedial hypothalamic syndrome, satiety and cephalic phase. Psychological Review, 84, 89–126.CrossRefGoogle ScholarPubMed
Powley, T. L. (2000). Vagal circuitry mediating cephalic-phase responses to food. Appetite, 34, 184–188.CrossRefGoogle Scholar
Quirk, G. J., Russo, G. K., Barron, J. L., and Lebron, K. (2000). The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci, 20, 6225–6231.CrossRefGoogle ScholarPubMed
Radley, J. J., Arias, C. M., and Sawchenko, P. E. (2006). Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. Journal of Neuroscience, 26, 12967–12976.CrossRefGoogle ScholarPubMed
Rakic, P. (2002). Evolving concepts of cortical radial and areal specification, Prog Brain Res, 136, 265–280.CrossRefGoogle ScholarPubMed
Richter, C. P. (1943). Total self-regulatory functions in animals and human beings. Harvey Lectures, 38, 367–371.Google Scholar
Rimmele, U., Hediger, K., Heinrichs, M., and Klaver, P. (2009). Oxytocin makes a face in memory familiar. The Journal of Neuroscience, 29, 38–42.CrossRefGoogle ScholarPubMed
Rizzolatti, G., and Luppino, G. (2001). The cortical motor system. Neuron, 31, 889–901.CrossRefGoogle ScholarPubMed
Roberts, R. L., Jenkins, K. T., Lawler, T., et al. (2001). Prolactin levels are elevated after infant carrying in parentally inexperienced common marmosets. Physiol Behav, 72, 713–720.CrossRefGoogle ScholarPubMed
Robson, S., and Wood, B. (2008). Hominin life history: Reconstruction and evolution. J Anat, 212, 394–425.CrossRefGoogle ScholarPubMed
Roitman, M. F., Na, E., Anderson, G., et al. (2002). Induction of a salt appetite alters dendritic morphology in nucleus accumbens and sensitizes rats to amphetamine. The Journal of Neuroscience, 22, 1–5.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284–294.CrossRefGoogle ScholarPubMed
Romero, L. M., Dickens, M. J., and Cyr, N. E. (2009). The reactive scope model: a new model integrating homeostasis, allostasis, and stress. Hormones and Behavior, 55, 375–389.CrossRefGoogle Scholar
Rosen, J. B. (2005). The neurobiology of conditioned and unconditioned fear: a neurobehavioral system analysis of the amygdala. Behavioral and Cognitive Neuroscience Reviews, 3, 23–41.CrossRefGoogle Scholar
Rosen, J. B., and Schulkin, J. (1998). From normal fear to pathalogical anxiety. Psychol Rev, 105, 325–350.CrossRefGoogle Scholar
Rozin, P. (1976). The evolution of intelligence and access to the cognitive unconscious. In Sprague, J. and Epstein, A. N. (Eds.), Progress in psychobiology and physiological psychology. New York: Academic Press.Google Scholar
Ruscio, M. G., Sweeny, T., Hazelton, J., Suppatkul, P., and Carter, C. S. (2007). Social environment regulates corticotropin releasing factor, corticosterone and vasopressin in juvenile prairie voles. Hormones & Behavior, 51, 54–61.CrossRefGoogle ScholarPubMed
Ryff, C. D., Singer, B. H., and Dienberg, Love G. (2004). Positive health: connecting well-being with biology. Phil R Soc London B, 359, 1386–1394.Google ScholarPubMed
Sabini, J., and Silver, M. (1982). Moralities of everyday life. Oxford: Oxford University Press.Google Scholar
Sanford, L. D., Nassar, P., Ross, R. J., Schulkin, J., and Morrison, A. R. (1998). Prolactin Microinjections into the Amygdalar Central Nucleus Lead to Decreased NREM Sleep. Sleep Research Online, 1, 109–113.Google ScholarPubMed
Saper, C. B. (1995). Central autonomic system. In Paxinos, G. (Ed.), The rat nervous system. New York: Academic Press.Google Scholar
Sapolsky, R. M. (1992). Stress: The aging brain and the mechanisms of neuron death. Cambridge, MA: MIT Press.Google Scholar
Sapolsky, R. M. (1995). Social subordinance as a marker of hypercortisolism. Some unexpected subtleties. Ann NY Acad Sci, 771, 626–639.CrossRefGoogle ScholarPubMed
Savaskan, E., Ehrhardt, R., Schulz, A., Walter, M., and Schächinger, H. (2008). Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology, 33, 368–374.CrossRefGoogle ScholarPubMed
Sawchenko, P. E. (1987). Evidence for local site of action for glucocorticoids in inhibiting CRH and vasopressin expression in the paraventricular nucleus. Brain Res, 17, 213–223.CrossRefGoogle Scholar
Sawchenko, P. E., Swanson, L. W., and Vale, W. W. (1984.) CRF: co-expression within distinct subset of oxytoci-vasoperssin and neurotensin immunorective neurons in the hypothalamus of the male rat. J. of Neuroscience, 4, 1118–1129.CrossRefGoogle Scholar
Shachar-Dadon, A, Schulkin, J, and Leshem, M. (2009). Adversity before conception will affect adult progeny in rats. Developmental Psychology, 45(1), 9–16.CrossRefGoogle ScholarPubMed
Schmidt, L. A., Fox, N. A., Schulkin, J. and Gold, P. W. (1999). Behavioral and psychophysiological correlates of self-presentation in temperamentally shy children. Developmental Psychobiology, 35, 119–135.3.0.CO;2-G>CrossRefGoogle Scholar
Schmidt, L. A., Fox, N. A., and Hamer, D. H. (2007). Evidence for a gene-gene interaction in children's behavior problems: association of 5-HTT short and DRD4 long genotypes with internalizing and externalizing behaviors in typically developing seven year-olds. Developmental and Psychopathology, 19, 1105–1116.CrossRefGoogle Scholar
Schulkin, J. (1991). Sodium hunger: the search for a salty taste. Cambridge: Cambridge University Press.Google Scholar
Schulkin, J. (1999). The neuroendocrine regulation of behavior. Cambridge, MA: MIT Press.Google Scholar
Schulkin, J. (2003). Rethinking homeostasis. Cambridge, MA: MIT Press.Google Scholar
Schulkin, J., Morgan, M. A., and Rosen, J. B. (2005). A neuroendocrine mechanism for sustaining fear. Trends in Neuroscience, 28, 629–35.CrossRefGoogle ScholarPubMed
Schultz, W. (2007). Multiple dopamine fujnctions at different time courses. Ann. Rev. Neurosci. 30, 59–88.CrossRefGoogle ScholarPubMed
Schwabl, H. (1993). Yolk is a source of maternal testosterone for developing birds. Proc Natl Acad Sci USA, 90, 11446–11450.CrossRefGoogle ScholarPubMed
Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., and Rauch, S. L. (2003). Inhibited and unhibited infants “grown up”: adult amygdalar response to novelty. Science, 300, 1952–1955.CrossRefGoogle Scholar
Selye, H. (1956). The stress of life. New York: McGraw-Hill.Google Scholar
Shepard, J. D., Barron, K. W., and Myers, D. A. (2000). Corticosterone delivery to the amygdala increases corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and anxiety-like behavior. Brain Research, 851, 288–295.CrossRefGoogle Scholar
Shepard, J. D., Liu, Y., Sassone-Corsi, P., and Aguilera, G. (2005). Role of glucocorticoids and cAMP-mediated repression in limiting corticotrophin-releasing hormone transcription during stress. Journal of Neuroscience, 25, 4073–4081.CrossRefGoogle ScholarPubMed
Silk, J. B. (2007). The adaptive value of sociality in mammalian groups. Proc. Trans. R. Soc., 362, 539–559.Google ScholarPubMed
Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.Google Scholar
Singer, B., and Ryff, C. D. (1999). Hierarchies of life histories and associated health risks. Ann N Y Acad Sci, 896, 96–115.CrossRefGoogle ScholarPubMed
Singer, T., Snozzi, R., Bird, G., et al. (2008). Effects of oxytocin and prosocial behavior on brain responses to direct and vicariously experienced pain. Emotion, 8, 781–791.CrossRefGoogle ScholarPubMed
Smith, G. P. (1997). Satiation from gut to brain. Oxford: Oxford University Press.Google Scholar
Smith, R. (2007). Mechanisms of disease: parturition. New England Journal of Medicine, 356, 271–283.CrossRefGoogle Scholar
Smoller, J. W., Yamaki, L. H., Fagerness, J. A., et al., (2005) The corticotropin-releasing hormone gene and behavioral inhibition in children at risk for panic disorder. Biol Psychiatry, 57, 1485–1492.CrossRefGoogle ScholarPubMed
Stellar, E. (1954). The physiology of motivation. Psychological review, 61, 5–22.CrossRefGoogle ScholarPubMed
Stellar, J. R., and Stellar, E. (1985). The neurobiology of motivation and reward. New York: Springer-Verlag.CrossRefGoogle Scholar
Sterling, P. (2004). Principles of allostasis: Optimal design, predictive regulation, psychopathology and rational therapeutics. In Schulkin, J. (Ed.) Allostasis, homeostasis and the costs of physiological adaptation. Cambridge: Cambridge University Press.Google Scholar
Sterling, P., and Eyer, J. (1988). Allostasis: a new paradigm to explain arousal pathology. In Fisher, S. and Reason, J. (Eds.), Handbook of life stress, cognition, and health. New York: John Wiley & Sons.Google Scholar
Strand, F. L. (1999). Neuropeptides: regulators of physiological processes. Cambridge, MA: MIT Press.Google Scholar
Sullivan, R. M. and Gratton, A. (1999). Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. The Journal of Neuroscience, 19(7), 2834–2840.CrossRefGoogle ScholarPubMed
Sumners, C., Gault, T.R., and Fregly, M.J. (1991). Potentiation of angiotensin II-induced drinking by gluocorticoids is a specific glucocorticoid Type II receptor (GR)-mediated event. Brain Res, 552, 2–8.CrossRefGoogle Scholar
Swanson, L.W. (2000). Cerebral hemisphere regulation of motivated behavior. Brain Res, 886: 113–164.CrossRefGoogle ScholarPubMed
Swanson, L. W. (1988). The neural basis of motivated behavior. Acta Morphol Neurol Scand, 26, 165–176.Google ScholarPubMed
Swanson, L. W., and Simmons, D. M. (1989). Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat. J Comp Neurol, 285, 413–435.CrossRefGoogle ScholarPubMed
Takahashi, L. K., Nakashima, B. R., Hong, H., and Watanabe, K. (2005). The smell of danger: a behavioral and neural analysis of predator odor-induced fear. Neuroscience and Biobehavioral Reviews, 29, 1157–1167.CrossRefGoogle ScholarPubMed
Takahashi, L. K., Turner, J. G., and Kalin, N. H. (1998). Prolonged stress-induced elevation in plasma corticosterone during pregnancy in the rat: implications for prenatal stress studies. Psychoneuroendocrinology, 23, 571–581.CrossRefGoogle ScholarPubMed
Taylor, S. E. (2006). Tend and befriend: biobehavioral bases of affiliation under stress. Current Directions in Psychological Science, 15(6), 273–277.CrossRefGoogle Scholar
Tessitore, A., Hariri, A. R., Fera, F., et al. (2002). Dopamine modulates the response of the human amygdala: a study in Parkinson's disease. J. of Neuroscience, 22, 9099–9103.CrossRefGoogle ScholarPubMed
Thompson, R. R., George, K., Walton, J. C., Orr, S. P., and Benson, J. (2006). Sex-specific influences of vasopressin on human social communication. Proc Natl Acad Sci, 103, 7889–7894.CrossRefGoogle ScholarPubMed
Thompson, B. L., Erickson, K. Schulkin, J., and Rosen, J. B. (2004). Corticosterone facilitates retention of contextual fear conditioning and increases CRH mRNA expression in the amygdala. Behavioral Brain Research, 149, 209–215.CrossRefGoogle ScholarPubMed
Tinbergen, N. (1951/1969). The study of instinct. Oxford: Oxford University Press.Google Scholar
Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.Google Scholar
Tomasello, M., Kruger, A. C., and Ratner, H. H. (1993). Cultural learning. Behavioral and Brain Sciences, 16: 495–552.CrossRefGoogle Scholar
Ullman, M. T. (2001). A neurocognitive perspective on language: the declarative procedural model. Nature Neuroscience, 9, 266–286.Google Scholar
Ullman, M. T. (2004). Is Broca's area part of a basal ganglia thalamocortical circuit?Cognition, 92, 231–270.CrossRefGoogle Scholar
Unkelbach, C., Guastella, A.J., and Forgas, J. P. (2008) Oxytoctin selectively facilitates recognition of positive sex and relationship words. Psychological Science 19, 1092–1094.CrossRefGoogle ScholarPubMed
Urnäs-Mobey, K. (1998). Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology, 23 (8), 819–835.Google Scholar
Vale, W., Spiess, J., Rivier, C., and Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates the secretion of corticotropin releasing hormone and beta-endorphin. Science, 213, 1394–1397.CrossRefGoogle ScholarPubMed
Valenstein, E. S. (2005). The war of the soups and the sparks. New York: Columbia University Press.CrossRefGoogle Scholar
Voorhuis, T. A., Kloet, E. R., and Wied, D. (1991). Effect of a vasotocin analog on singing behavior in the canary. Horm Behav, 25, 549–559.CrossRefGoogle ScholarPubMed
Wagner, U., Wahle, M., Moritz, F., Wagner, U., Häntzschel, H., and Baerwald, C. G. (2006). Promoter polymorphisms regulating corticotrophin-releasing hormone transcription in vitro. Horm Metab Res, 38, 69–75.CrossRefGoogle ScholarPubMed
Wallis, O. C., Mac-Kwashie, A. O., Makri, G., and Wallis, M. (2005). Molecular evolution of prolactin in primates. J Mol Evol, 60, 606–614.CrossRefGoogle ScholarPubMed
Wang, Y., Herrmann, C. S., Moess, B., et al. (2000). Localization of early syntactic processes in frontal and temporal cortical areas: a magnetoencphalographic study. Human Brain Mapping, 11, 1–11.Google Scholar
Warren, W. C., Hillier, L. W., Marshall Graves, J. A., et al. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature, 455, 256.CrossRefGoogle Scholar
Watts, A. G., and Sanchez-Watts, G. (1995). Region-specific regulation of neuropeptide mRNAs in rat limbic forebrain neurones by aldosterone and corticosterone. J Physiol (Lond), 484, 721–736.CrossRefGoogle Scholar
Weaver, I. C., Cervoni, N., Champagne, F. A., et al. (2004). Epigenetic programming by maternal behavior. Nat Neurosci, 7, 847–854.CrossRefGoogle ScholarPubMed
Wehr, T. A., Moul, D. E., Barbato, G., et al. (1993). Conservation of photoperiod-responsive mechanisms in humans. Am J Physiol, 265, 846–857.Google ScholarPubMed
Windle, R. J., Shanks, N., Lightman, S. L., and Ingram, C. D. (1997). Central oxytocin administration reduces stress-induced corticosterone relase and anxiety behavior in rats. Endocrinology, 138, 2829–2834.CrossRefGoogle Scholar
Wingfield, J. C. (2004). Allostatic load and life cycles: Implication for neuroendocrine control mechanisms. In Schulkin, J. (Ed.), Allostasis, homeostasis and the costs of physiological adaptation. Cambridge: Cambridge University Press.Google Scholar
Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R., and Insel, T. R. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365, 545–548.CrossRefGoogle Scholar
Wolf, G. (1964). Sodium appetite elicited by aldosterone. Psychonomic Sciences, 1, 211–212.CrossRefGoogle Scholar
Wood, B. (1992). Origin and evolution of the genus homo. Nature, 355, 783–790.CrossRefGoogle ScholarPubMed
Woods, S. C., Hutton, R. A., and Makous, W. (1970). Conditioned insulin secretion in the albino rat. Proceedings of the Society of Experimental Biology and Medicine, 133, 965–968.CrossRefGoogle ScholarPubMed
Yao, M., Schulkin, J., and Denver, R. J. (2008). Evolutionary conserved glucocorticoid regulation of CRH. Endorcinology, 149, 2352–2360.CrossRefGoogle Scholar
Young, L. J., Winslow, J. T., Want, Z, et al. (1997). Gene targeting approaches to neuroendocrinology. Hormones and Behavior, 31, 221–231.CrossRefGoogle ScholarPubMed
Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R., and Insel, T. R. (1999). Increased affiliative response to vasopressin in mice expressing the via receptor from a manogamous vole. Nature, 400, 766–768.CrossRefGoogle Scholar
Zald, D. H., and Rauch, S. L. (2006). The Orbitofrontal Cortex. Oxford: Oxford University press.CrossRefGoogle ScholarPubMed
Zimmer, C. (2005). Smithsonian intimate guide to human origins. Washington, DC: Smithsonian Books.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jay Schulkin, Georgetown University, Washington DC
  • Book: Adaptation and Well-Being
  • Online publication: 18 April 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511973666.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jay Schulkin, Georgetown University, Washington DC
  • Book: Adaptation and Well-Being
  • Online publication: 18 April 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511973666.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jay Schulkin, Georgetown University, Washington DC
  • Book: Adaptation and Well-Being
  • Online publication: 18 April 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511973666.011
Available formats
×