Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-27T18:32:43.498Z Has data issue: false hasContentIssue false

10 - MOS transistors with alternative materials

Published online by Cambridge University Press:  05 August 2011

David Esseni
Affiliation:
Università degli Studi di Udine, Italy
Pierpaolo Palestri
Affiliation:
Università degli Studi di Udine, Italy
Luca Selmi
Affiliation:
Università degli Studi di Udine, Italy
Get access

Summary

In the previous chapters we have considered arbitrarily oriented and strained silicon devices with SiO2 gate dielectric. In this chapter we discuss carrier transport in MOS transistors with new materials either in the gate stack or in the device channel.

We first discuss the scattering mechanisms that may be relevant for devices employing high-κ dielectrics in the gate stack, namely remote optical phonons and Coulomb scattering with fixed charges in the gate stack.

Then alternative channel materials such as germanium and gallium arsenide are analyzed using the generalization of the EMA and k·p approaches described in Chapter 8. Gallium-arsenide is also taken as a case study for polar optical phonon scattering, which was not described in Chapter 4.

Alternative gate materials

As discussed in Chapter 1, aggressive scaling of the SiO2 dielectric has led to a substantial increase of the gate leakage current and static power dissipation. To counteract this harmful trend for the performance and reliability of CMOS devices, alternative dielectric materials, the so called high-κ materials with dielectric constant higher than that of SiO2, have been extensively investigated. For optimum flat-band voltage control and improved performance, high-κ dielectrics are often integrated with metal gate materials.

Unfortunately, transistors with high-κ/metal gate stacks often exhibit a lower mobility with respect to the universal curves for thick SiO2 dielectrics. This is illustrated in Fig.10.1, which collects experimental mobility curves for devices featuring HfO2 and HfSiON based gate stacks.

Type
Chapter
Information
Nanoscale MOS Transistors
Semi-Classical Transport and Applications
, pp. 406 - 450
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×