Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-22T11:20:02.203Z Has data issue: false hasContentIssue false

5 - Micrasterias, and computing patterning along with growth

Published online by Cambridge University Press:  05 July 2011

Lionel G. Harrison
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

In this chapter, especially in Section 5.2.2, I give a fair amount of detail on how one goes about a computational project to explore the ability of reaction–diffusion mechanisms to generate a sequence of dichotomous branchings as they are observed in a rather complex morphogenesis of a single cell. Several generalities should be borne in mind by the reader: first, we are not merely pursuing the objective of the animator and many practitioners of computer graphics to draw a good moving picture of something no matter how we do it. Our objective is that of the developmental biologist: to draw the plant and its development the way the plant does it.

Second, many readers, including experimental biologists, may have no clear concept of what it takes to do the theoretical side of a project in developmental biology. The message here is that, in proper pursuit of the scientific method, experiment and theory are about equally time-consuming. I hope that Section 5.2.2 illustrates how the theoretical work requires groups with graduate students and postdoctoral fellows fully devoted to it, just as biological experimentation does.

Third, as one pursues such a theoretical project, one gradually begins to realize more and more that negative-looking features of the postulated mechanisms are essential to getting the right development of shapes. For plants with many small and separate growing regions, how their boundaries are established and how they manage to move to keep the active regions small is often more important than what is going on inside the active regions.

Type
Chapter
Information
The Shaping of Life
The Generation of Biological Pattern
, pp. 77 - 104
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×