Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T02:43:07.936Z Has data issue: false hasContentIssue false

2 - Neural Development and Lifelong Plasticity

Published online by Cambridge University Press:  03 May 2011

Charles A. Nelson III
Affiliation:
Harvard Medical School
Daniel P. Keating
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

The formation and growth of the human brain are undoubtedly two of the most remarkable feats of human construction. Although the 1990s were declared the “decade of the brain” in the United States, it is clear as we enter the early twenty-first century that our knowledge of brain function and development is far from complete. Knowledge of brain development is critical to understanding child development, a point made throughout this chapter. In particular, although it is commonly believed that brains develop on their own accord, largely under the direction of genes and hormones, I will make clear in this chapter that brains desperately need both endogenous and exogenous experiences to grow properly. In the sections that follow, I will describe the major events that give rise to the human brain. Once this blueprint is established, I will then discuss the role of experience in influencing the brain. I will do so by drawing on the role of both early and late experience to demonstrate that although brain development is largely limited to the first two decades of life, brain reorganization continues to occur through much of the life span.

BRAIN DEVELOPMENT – A PRÉCIS

Shortly after conception, rapid cell division in the zygote results in the formation of the blastocyst. By the end of the first week, the blastocyst itself has separated into an inner and outer layer.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almli, C. R., Rivkin, M. J., & McKinstry, R. C. Brain Development Cooperative Group. (2007). The NIH MRI study of normal brain development (Objective-2): Newborns, infants, toddlers, and preschoolers. Neuroimage, 35(1), 308–25.CrossRefGoogle ScholarPubMed
Black, J. E., Jones, T. A., Nelson, C. A., & Greenough, W. T. (1998). Neuronal plasticity and the developing brain. In Alessi, N. E., Coyle, J. T., Harrison, S. I., & Eth, S. (Eds.), Handbook of Child and Adolescent Psychiatry. Vol 6. Basic Psychiatric Science and Treatment (pp. 31–53). New York: John Wiley & Sons.Google Scholar
Bourgeois, J., Reboff, P., & Rakic, P. (1989). Synaptogenesis in visual cortex of normal and preterm monkeys: Evidence from intrinsic regulation of synaptic overproduction. Proceedings from the National Academy of Sciences, 86, 4297–4301.CrossRefGoogle ScholarPubMed
Busciglio, J., & Yankner, B. A. (1995). Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro. Nature, 378, 776–9.CrossRefGoogle ScholarPubMed
Changeux, J. P., & Danchin, A. (1976). Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature, 264(5588), 705–12.CrossRefGoogle Scholar
Chenn, A., Braisted, J. E., McConnell, S. K., & O'Leary, D. D. M. (1997). Development of the cerebral cortex: Mechanisms controlling cell fate, laminar and areal patterning, and axonal connectivity. In Cowan, W. M., Jessell, T. M., & Zipursky, S. L. (Eds.), Molecular and Cellular Approaches to Neural Development. New York: Oxford University Press.Google Scholar
Chenn, A., & McConnell, S. K. (1995). Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell, 82, 631–41.CrossRefGoogle ScholarPubMed
Crowley, J. C., & Katz, L. C. (1999). Development of ocular dominance columns in the absence of retinal input. Nature Neuroscience, 2, 1125–30.CrossRefGoogle ScholarPubMed
Crowley, J. C., & Katz, L. C. (2000). Early development of ocular dominance columns. Science, 290, 1321–4.CrossRefGoogle ScholarPubMed
Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., et al. (1997). Anatomical variability in the cortical representation of first and second languages. Neuroreport, 8, 3809–15.CrossRefGoogle Scholar
Diebler, M. F., Farkas-Bargeton, E., & Wehrle, R. (1979). Developmental changes of enzymes associated with energy metabolism and the synthesis of some neurotransmitters in discrete areas of human neocortex. Journal of Neurochemistry, 32(2): 429–35.CrossRefGoogle ScholarPubMed
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305–7.CrossRefGoogle ScholarPubMed
Erickson, C. A., Jagadeesh, B., & Desimone, R. (2000). Clustering of perirhinal neurons with similar properties following visual experience in adult monkeys. Nature Neuroscience, 3, 1066–8.CrossRefGoogle ScholarPubMed
Fuglestad, A. J., Rao, R., & Georgieff, M. K. (2008). The role of nutrition in cognitive development. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of Developmental Cognitive Neuroscience, 2nd edition (pp. 623–42). Cambridge, MA: MIT Press.Google Scholar
Gibson, A., & Brammer, M. J. (1981). The influence of divalent cations and substrate concentration on the incorporation of myo-inositol into phospholipids of isolated bovine oligodendrocytes. Journal of Neurochemistry, 36(3), 868–74.CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2(10), 861–3.CrossRefGoogle ScholarPubMed
Giedd, J. N., Lalonde, F. M., Celano, M. J., White, S. L., Wallace, G. L., Lee, N. R., & Lenroot, R. K. (2009). Anatomical brain magnetic resonance imaging of typically developing children and adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 48(5), 465–70.Google ScholarPubMed
Gilmore, J. H., Lin, W., Knickmeyer, R., Hamer, R. M., Smith, J. K., & Gerig, G. (2006). Imaging early childhood brain development in humans. Presentation at the Society for Neuroscience, Fall 2006.
Gilmore, J. H., Zhai, G., Wilber, K., Smith, J. K., Lin, W., & Gerig, G. (2004). 3 Tesla magnetic resonance imaging of the brain in newborns. Psychiatry Research, 132, 81–5.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1987). Development of cortical circuitry and cognitive function. Child Development, 58(3) 601–22.CrossRefGoogle ScholarPubMed
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58(3) 539–59.CrossRefGoogle ScholarPubMed
Greenough, W. T., Juraska, J. M., Volkmar, F. R. (1979). Maze training effects on dendritic branching in occipital cortex of adult rats. Behavioral & Neural Biology. 26(3), 287–97.CrossRefGoogle ScholarPubMed
Greenough, W. T., Madden, T. C., & Fleischmann, T. B. (1972). Effects of isolation, daily handling, and enriched rearing on maze learning. Psychonomic Science, 27, 279–80.CrossRefGoogle Scholar
Hatten, M. E. (1999). Central nervous system neuronal migration. Annual Review of Neuroscience, 22, 511–39.CrossRefGoogle ScholarPubMed
Hemmati-Brivanlou, A., Kelly, O. G., & Melton, D. A. (1994). Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell, 77, 283–95.CrossRefGoogle ScholarPubMed
Henderson, C. E. (1996). Role of neurotrophic factors in neuronal development. Current Opinion in Neurobiology, 6, 64–70.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979a). Synaptic and dendritic development and mental defect. In Buchwalk, N. & Brazier, M. (Eds.), Brain Mechanisms in Mental Retardation. New York: Academic.Google Scholar
Huttenlocher, P. R. (1979b). Synaptic density in human frontal cortex: Developmental changes and effects of aging. Brain Research, 163, 195–205.Google ScholarPubMed
Huttenlocher, P. R. (1984) Synapse elimination and plasticity in developing human cerebral cortex. American Journal of Mental Deficiency, 88(5), 488–96.Google ScholarPubMed
Huttenlocher, P. R., & Dabholkar, A. S. (1997) Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387(2), 167–78.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Huttenlocher, P. R., & de Courten, C. (1987). The development of synapses in striate cortex of man. Human Neurobiology, 6(1), 1–9.Google Scholar
Jacobson, M. D., Weil, M., & Raff, M. C. (1997). Programmed cell death in animal development. Cell, 88, 347–54.CrossRefGoogle ScholarPubMed
Johnson, J. S., & Newport, E. L. (1989). Critical period effects in second language learning on the production of English consonants. Cognitive Psychology, 21, 60–99.CrossRefGoogle Scholar
Kagan, J., & Herschkowitz, N. (2005). A Young Mind in a Growing Brain. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Katz, L. C., & Shatz, C. J. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 1133–8.CrossRefGoogle ScholarPubMed
Kerr, J. F. R., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26, 239–57.CrossRefGoogle ScholarPubMed
Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., Hamer, R. M., Lin, W., Gerig, G., & Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28, 12176–82.CrossRefGoogle ScholarPubMed
Kostović, I. (1990). Structural and histochemical reorganization of the human prefrontal cortex during perinatal and postnatal life. Progress in Brain Research, 85, 223–39.CrossRefGoogle ScholarPubMed
LaMantia, A. S., & Rakic, P. (1990). Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. Journal of Neuroscience, 10(7), 2156–75.CrossRefGoogle ScholarPubMed
Liepert, J., Bauder, H., Miltner, W. H. R., Taub, E., & Weiller, C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31, 1210–16.CrossRefGoogle ScholarPubMed
Martin, J. H., & Jessell, T. M. (1991). Development as a guide to the regional anatomy of the brain. In Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.), Principles of Neural Science (3rd edition). Norwalk, CT: Appleton & Lange.Google Scholar
Maurer, D., Lewis, T. L., Brent, H. P., & Levin, A. V. (1999). Rapid improvement in the acuity of infants after visual input. Science, 286, 108–10.CrossRefGoogle ScholarPubMed
Maurer, D., Lewis, T. L., &. Mondloch, C. J. (2008). Plasticity of the visual system. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of Developmental Cognitive Neuroscience, 2nd Edition (pp. 415–37). Cambridge, MA: MIT Press.Google Scholar
Mattson, S. N., Fryer, S. L., McGee, C. L., & Riley, E. P. (2008). Fetal alcohol syndrome. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of Developmental Cognitive Neuroscience, 2nd Edition (pp. 643–52). Cambridge, MA: MIT Press.Google Scholar
Michel, A. E., & Garey, L. J. (1984). The development of dendritic spines in the human visual cortex. Human Neurobiology, 3(4), 223–7.Google ScholarPubMed
Molliver, M., Kostovic, I., & Loos, H. (1973). The development of synapses in the human fetus. Brain Research, 50, 403–7.CrossRefGoogle ScholarPubMed
Nelson, C. A. (1995). The ontogeny of human memory: A cognitive neuroscience perspective. Developmental Psychology, 31, 723–38.CrossRefGoogle Scholar
Nelson, C. A. (2000). Neural plasticity and human development: The role of early experience in sculpting memory systems. Developmental Science, 3, 115–30.CrossRefGoogle Scholar
Nelson, C. A., de Haan, M., & Thomas, K. M. (2006a). Neural bases of cognitive development. In Damon, W., Lerner, R., Kuhn, D., & Siegler, R. (Volume Editor), Handbook of Child Psychology, 6th Edition, Vol. 2: Cognitive, Perception and Language (pp. 3–57). New Jersey: John Wiley & Sons, Inc.Google Scholar
Nelson, C. A., de Haan, M., & Thomas, K. M. (2006b). Neuroscience and Cognitive Development: The Role of Experience and the Developing Brain. New York: John Wiley & Sons.Google Scholar
Nudo, R. J., & Milliken, G. W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. Journal of Neurophysiology, 75(5):2144–9.CrossRefGoogle ScholarPubMed
O'Leary, D. D., Schlaggar, B. L., & Tuttle, R. (1994). Specification of neocortical areas and thalamocortical connections. Annual Review of Neuroscience, 17, 419–39.CrossRefGoogle ScholarPubMed
O'Rahilly, R., & Gardner, E. (1979). The initial development of the human brain. Acta Anatomica, 104, 123–33.CrossRefGoogle ScholarPubMed
O'Rahilly, R., & Muller, F. (1994). Neurulation in the normal human embryo. CIBA Foundation Symposium, 181, 70-82.Google ScholarPubMed
Patterson, P. H., & Nawa, H. (1993) Neuronal differentiation factors/cytokines and synaptic plasticity. Cell, 72, 123–37.CrossRefGoogle ScholarPubMed
Perani, D., Paulesu, E., Galles, N. S., Dupoux, E., Dehaene, S., Bettinardi, V., Cappa, S. F., Fazio, F., & Mehler, J. (1998). The bilingual brain. Proficiency and age of acquisition of the second language. Brain, 121, 1841–52.CrossRefGoogle ScholarPubMed
Petitto, L. A., Zatorre, R. J., Gauna, K., Nikeiski, E. J., Dostie, D., & Evans, A. C. (2000). Speech-like cerebral activity in profoundly deaf people processing signed languages: Implications for the neural basis of human language. Proceedings of the National Academy of Sciences of the United States of America. 97(25), 13961–6.CrossRefGoogle ScholarPubMed
Pons, T. (1995). Abstract: Lesion-induced cortical plasticity. In Julesz, B. & Kovacs, I. (Eds.), Maturational Windows and Adult Cortical Plasticity (pp. 175–8). Reading, MA: Addison-Wesley Publishing Company.Google Scholar
Pons, T. P., Garraghty, P. E., Ommaya, A. K., Kaas, J. H., Taub, E., & Mishkin, M. (1991). Massive cortical reorganization after sensory deafferentation in adult macaques. Science, 252, 1857–60.CrossRefGoogle ScholarPubMed
Purves, D. (1989). Assessing some dynamic properties of the living nervous system. Quarterly Journal of Experimental Physiology, 74(7), 1089–1105.CrossRefGoogle ScholarPubMed
Raff, M. C., Barres, B. A., Burne, J. F., Coles, H. S., Ishizaki, Y., & Jacobson, M. D. (1993). Programmed cell death and the control of cell survival: Lessons from the nervous system. Science, 262, 695–9.CrossRefGoogle Scholar
Rakic, P. (1971). Guidance of neurons migrating to the fetal monkey neocortex. Brain Research, 33, 471–6.CrossRefGoogle ScholarPubMed
Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. Journal of Comparative Neurology, 145, 61–83.CrossRefGoogle ScholarPubMed
Rakic, P. (1974). Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition. Science, 183, 425–7.CrossRefGoogle ScholarPubMed
Rakic, P. (1978). Neuronal migration and contact guidance in the primate telencephalon. Postgraduate Medical Journal, 54, 25–40.Google ScholarPubMed
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170–6.CrossRefGoogle ScholarPubMed
Rakic, P. (1990). Principles of neural cell migration. Experientia, 46, 882–91.CrossRefGoogle ScholarPubMed
Rakic, P. (1995). Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proceedings of the National Academy of Sciences, 92, 11323–7.CrossRefGoogle ScholarPubMed
Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N., & Goldman-Rakic, P. S. (1986). Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science, 232(4747) 232–5.CrossRefGoogle ScholarPubMed
Ramachandran, V. S., Rogers-Ramachandran, D., & Stewart, M. (1992). Perceptual correlates of massive cortical reorganization. Science, 258, 1159–60.CrossRefGoogle ScholarPubMed
Rampon, C., Jiang, C. H., Dong, H., Tang, Y-P., Lockhart, D. J., Schultz, P. G., Tsien, J. Z., & Hu, Y. (2000). Effects of environmental enrichment on gene expression in the brain. Proceedings of the National Academy of Sciences, 97, 12880–4.CrossRefGoogle Scholar
Sale, A., Vetencourt, J. F. M., Medini, P., Cenni, M. C., Baroncelli, L., Pasquale, R., & Maffei, L. (2007). Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nature Neuroscience, 10, 679–81.CrossRefGoogle ScholarPubMed
Schlaggar, B. L., Fox, K., O'Leary, D. D. (1993) Postsynaptic control of plasticity in developing somatosensory cortex. Nature, 364(6438), 623–6.CrossRefGoogle ScholarPubMed
Sidman, R. L., & Rakic, P. (1973). Neuronal migration, with special reference to developing human brain: A review. Brain Research, 62, 1–35.CrossRefGoogle ScholarPubMed
Sidman, R., & Rakic, P. (1982). Development of the human central nervous system. In Haymaker, W. & Adams, R. D. (Eds.), Histology and Histopathology of the Nervous System. Springfield, IL: Charles C. Thomas.Google Scholar
Shonkoff, J. P., & Phillips, D. A. (2000). From Neurons to Neighborhoods: The Science of Early Childhood Development. Washington, DC: National Academy of Sciences Press.Google Scholar
Smart, I. H. M. (1985). A localized growth zone in the wall of the developing mouse telencephalon. Journal of Anatomy, 140, 397–402.Google Scholar
Smith, J. L., & Schoenwolf, G. C. (1997). Neurulation: Coming to closure. Trends in Neurosciences, 20, 510–17.CrossRefGoogle ScholarPubMed
Spemann, H., & Mangold, H. (1924). Uber induktion von embryonalanlagen dürch implantation artfremder organisatoren. Archiv fuer Mikroskopische Anatomie Entwicklungsmechanik, 100, 599–638.CrossRefGoogle Scholar
Suter, D. M., & Forscher, P. (1998). An emerging link between cytoskeletal dynamics and cell adhesion molecules in growth cone guidance. Current Opinion in Neurobiology, 8, 106–16.CrossRefGoogle ScholarPubMed
Takahashi, T., Nowakowski, R. S., & Caviness, V. S.. (1994). Mode of cell proliferation in the developing mouse neocortex. Proceedings of the National Academy of Sciences, 91, 375–9.CrossRefGoogle ScholarPubMed
Takahashi, T., Nowakowski, R. S., & Caviness, V. S., Jr. (2001). Neocortical neurogenesis: regulation, control points, and a strategy of structural variation. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of Developmental Cognitive Neuroscience. Cambridge, MA: MIT Press.Google Scholar
Taub, E. (2000). Constraint-induced movement therapy and massed practice. Stroke 31(4), 986–8.CrossRefGoogle ScholarPubMed
Tessier-Lavigne, M., & Goodman, C. S. (1996). The molecular biology of axon guidance. Science, 274, 1123–33.CrossRefGoogle ScholarPubMed
Thoenen, H. (1995) Neurotrophins and neuronal plasticity. Science, 270(5236), 593–8.CrossRefGoogle ScholarPubMed
Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Trends in Neuroscience, 29, 148–59.CrossRefGoogle ScholarPubMed
Walsh, C., & Cepko, C. L. (1992). Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science, 255, 434–40.CrossRefGoogle ScholarPubMed
Walsh, C., & Cepko, C. L. (1993). Clonal dispersion in proliferative layers of developing cerebral cortex. Nature, 362, 632–5.CrossRefGoogle ScholarPubMed
Warkany, J., Lemire, R. J., & Cohen, M. M. (1981). Mental Retardation and Congenital Malformations of the Central Nervous System. Chicago: Year Book Medical Publishers.Google Scholar
Yuste, R., & Sur, M. (1999). Development and plasticity of the cerebral cortex: From molecules to maps. Journal of Neurobiology, 41, 1–6.3.0.CO;2-2>CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×