Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-14T21:40:48.357Z Has data issue: false hasContentIssue false

Chapter 6 - Intracellular mechanisms

Published online by Cambridge University Press:  05 June 2012

David Sterratt
Affiliation:
University of Edinburgh
Bruce Graham
Affiliation:
University of Stirling
Andrew Gillies
Affiliation:
Psymetrix Limited, Edinburgh
David Willshaw
Affiliation:
University of Edinburgh
Get access

Summary

Intracellular ionic signalling plays a crucial role in channel dynamics and, ultimately, in the behaviour of the whole cell. In this chapter we investigate ways of modelling intracellular signalling systems. We focus on calcium, as it plays an extensive role in many cell functions. Included are models of intracellular buffering systems, ionic pumps, and calcium dependent processes. This leads us to outline other intracellular signalling pathways involving more complex enzymatic reactions and cascades. We introduce the well-mixed approach to modelling these pathways and explore its limitations. When small numbers of molecules are involved, stochastic approaches are necessary. Movement of molecules through diffusion must be considered in spatially inhomogeneous systems.

Ionic concentrations and electrical response

Most work in computational neuroscience involves the construction and application of computational models for the electrical response of neurons in experimental and behavioural conditions. So far, we have presented the fundamental components and techniques of such models. Already we have seen that differences in particular ionic concentrations between the inside and outside of a cell are the basis of the electrical response. For many purposes our electrical models do not require knowledge of precise ionic concentrations. They appear only implicitly in the equilibrium potentials of ionic species such as sodium and potassium, calculated from the Nernst equation assuming fixed intra-and extracellular concentrations (Chapter 2). The relative ionic concentrations, and hence the equilibrium potentials, are assumed to remain constant during the course of the electrical activity our models seek to reproduce.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×