Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-04T08:33:58.134Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2014

Mark R. T. Dale
Affiliation:
University of Northern British Columbia
Marie-Josée Fortin
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Spatial Analysis
A Guide For Ecologists
, pp. 398 - 424
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aderhold, A., Husmeier, D., Lennon, J. J., Beale, C. M. & Smith, V. A. (2012). Hierarchical Bayesian models in ecology: reconstructing species interaction networks from non-homogeneous species abundance data. Ecological Informatics, 11, 55–64.CrossRefGoogle Scholar
Agarwal, D., Philips, J. M. & Venkatasubramanian, S. (2006). Hunting the bump: on maximizing statistical discrepancy. Proc. 17th Ann ACM-SIAM Symp. On Disc. Alg., pp. 1137–1146.CrossRef
Agnew, A. D. Q., Wilson, J. B. & Sykes, M. (1993). A vegetation switch as the cause of a forest/mire ecotone in New Zealand. Journal of Vegetation Science, 4, 273–278.CrossRefGoogle Scholar
Agresti, A. (1990). Categorical Data Analysis. New York: John Wiley & Sons, Inc.Google Scholar
Aing, C., Halls, S., Oken, K., Dobrow, R., & Fieberg, J. (2011). A Bayesian hierarchical occupancy model for track surveys conducted in a series of linear, spatially correlated, sites. Journal of Applied Ecology, 48, 1508–1517.CrossRefGoogle Scholar
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.CrossRefGoogle Scholar
Albert, R. & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.CrossRefGoogle Scholar
Aldous, J. M. & Wilson, R. J. (2000). Graphs and Applications: An Introductory Approach. New York: Springer-Verlag.CrossRefGoogle Scholar
Allain, C. & Cloitre, M. (1991). Characterizing the lacunarity of random and deterministic fractal sets. Physical Review A, 44, 3552–3558.CrossRefGoogle ScholarPubMed
Allen, T. F. H. & Hoekstra, T. W. (1992). Toward a Unified Ecology. New York: University of Columbia Press.Google Scholar
Almeida-Neto, M. & Guimaraes, P. R. (2007). On nestedness analyses: rethinking matrix temperature and anti-nestedness. Oikos, 116, 716–722.CrossRefGoogle Scholar
Almeida-Neto, M., Guimaraes, P. & Guimaraes, P. R. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 1227–1239.CrossRefGoogle Scholar
Alpargu, G. & Dutilleul, P. (2003). To be or not to be valid in testing the significance of the slope in simple quantitative linear models with autocorrelated errors. Journal of Statistical Computation and Simulation, 73, 165–180.CrossRefGoogle Scholar
Alpargu, G. & Dutilleul, P. (2006). Stepwise regression in mixed quantitative linear models with autocorrelated errors. Communications in Statistics–Simulation and Computation, 35, 79–104.CrossRefGoogle Scholar
Amarasekare, P. (2009). Competition and coexistence in animal communities. In The Princeton Guide to Ecology. ed. Levin, S. A., pp. 196–201. Princeton: Princeton University Press.Google Scholar
Andersen, M. (1992). Spatial analysis of two species interactions. Oecologia, 91, 134–140.CrossRefGoogle ScholarPubMed
Anderson, D. J. (1967). Studies on structure in plant communities. IV. Cyclical succession in Dryas communities from North-west Iceland. Journal of Ecology, 55, 629–635.CrossRefGoogle Scholar
Anderson, M. J., Crist, T. O., Chase, J. M. et al. (2011). Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecology Letters, 14, 19–28.CrossRefGoogle ScholarPubMed
Anderson, M. J., Ellingsen, K. E., & McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecology Letters, 9, 683–693.CrossRefGoogle ScholarPubMed
Anselin, L. (1988) Spatial Econometrics: Methods and Models. New York: Kluwer Academic Publisher.CrossRefGoogle Scholar
Anselin, L. (1995). Local indicators of spatial association: LISA. Geographical Analysis, 27, 93–115.CrossRefGoogle Scholar
Anselin, L. (2001). Spatial econometrics. In: A Companion to Theoretical Econometrics, ed. Bultagi, B., pp. 310–330. Oxford: Basil Blackwell.Google Scholar
Anselin, L. (2009). Spatial regression. In The SAGE Handbook of Spatial Analysis, eds. Fotheringham, A. S. & Rogerson, P. A., pp. 255–275. London: SAGE Publications Ltd.Google Scholar
Arbia, G., Benedetti, R. & Espa, G. (1996). Effects of the MAUP on image classification. Geographical Systems, 3, 123–141.Google Scholar
Arnot, C., Fisher, P. F., Wadsworth, R. & Wellens, J. (2004). Landscape metrics with ecotones: pattern under uncertainty. Landscape Ecology, 19, 181–195.CrossRefGoogle Scholar
Atmar, W. & Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373–382.CrossRefGoogle ScholarPubMed
Aubréville, A. (1938). La forêt coloniale: Les forêts de l’Afrique occidentale française. Annals de l’Académie des Sciences Coloniales Paris, 9, 1–245.Google Scholar
Aubréville, A. M. A. (1950–1951). La concept d’association dans la forêt dense equatoriale de la basse Côte d’Ivoire. Bulletin de la Société Botanique de France, 98, 145–158.CrossRefGoogle Scholar
Austin, M. P. (1987). Models for the analysis of species’ response to environmental gradients. Vegetatio, 69, 35–45.CrossRefGoogle Scholar
Austin, M. P. & Austin, B. O. (1980). Behaviour of experimental plant communities along a nutrient gradient. Journal of Ecology, 68, 891–918.CrossRefGoogle Scholar
Austin, M. P. & Smith, T. M. (1989). A new model for the continuum concept. Vegetatio, 83, 35–47.CrossRefGoogle Scholar
Austin, M. P., Nicholls, A. O., Doherty, M. D. & Meyers, J.A. (1994). Determining species response functions to an environmental gradient by means of a beta-function. Journal of Vegetation Science, 5, 215–228.CrossRefGoogle Scholar
Baddeley, A. J., Howard, C. V., Boyde, A. & Reid, S. (1987). Three-dimensional analysis of the spatial distribution of particles using the tandem-scanning reflected light microscope. Acta Stereologica, 6, 87–100.Google Scholar
Bailey, T. C. & Gatrell, A. C. (1995). Interactive Spatial Data Analysis. Harlow: Longman Scientific & Technical.Google Scholar
Baker, W. L. & Cai, Y. (1992). The r.le programs for multiscale analysis of landscape structure using the GRASS geographical information system. Landscape Ecology, 7, 291–302.CrossRefGoogle Scholar
Bang-Jensen, J. & Gutin, G. (2002). Digraphs: Theory, Algorithms and Applications. London: Springer-Verlag.CrossRefGoogle Scholar
Barabási, A. (2009). Scale-free networks: a decade and beyond. Science, 325, 412–413.CrossRefGoogle ScholarPubMed
Barabási, A., & Bonabeau, E. (2003). Scale-free networks. Scientific American, 288, 60–69.CrossRefGoogle ScholarPubMed
Barbier, N., Couteron, P., Lejoly, J., Deblauwe, V. & Lejeune, O. (2006). Self-organized vegetation patterning as a fingerprint of climate and human impact on semi-arid ecosystems. Journal of Ecology, 94, 537–547.CrossRefGoogle Scholar
Barbujani, G. & Sokal, R. R. (1991). Zones of sharp genetic change in Europe are also linguistic boundaries. Proceedings of the National Academy of Sciences of the United States of America, 87, 1816–1819.CrossRefGoogle Scholar
Barbujani, G., Oden, N. N. & Sokal, R. R. (1989). Detecting regions of abrupt change in maps of biological variables. Systematic Zoology, 38, 376–389.CrossRefGoogle Scholar
Barot, S., Gignoux, J. & Menaut, J.-C. (1999). Demography of a savanna palm tree: predictions from comprehensive spatial pattern analysis. Ecology, 80, 1987–2005.CrossRefGoogle Scholar
Bartlett, M. S. (1935). Some aspects of the time correlation problem in regard to tests of significance. Journal of the Royal Statistical Society, 98, 536–543.CrossRefGoogle Scholar
Bartlett, M. S. (1948). Smoothing periodograms from time series with continuous spectra. Nature, 161, 686–687.CrossRefGoogle Scholar
Bascompte, J. (2009). Disentangling the web of life. Science, 325, 416–419.CrossRefGoogle ScholarPubMed
Bascompte, J. & Solé, R. V. (1998). Spatiotemporal patterns in nature. Trends in Ecology and Evolution, 13, 173–174.CrossRefGoogle ScholarPubMed
Baselga, A. (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134–143.CrossRefGoogle Scholar
Batschelet, E. (1981). Circular Statistics in Biology. London: Academic Press.Google Scholar
Beale, C. M., Lennon, J. J., Yearsley, J. M, Brewer, M. J. & Elston, D. A. (2010). Regression analysis of spatial data. Ecology Letters, 13, 246–264.CrossRefGoogle ScholarPubMed
Beckage, B., Joseph, L., Belisle, P., Wolfson, D. B. & Platt, W. J. (2007). Bayesian change-point analyses in ecology. New Phytologist, 174, 456–467.CrossRefGoogle ScholarPubMed
Beguin, J., Martino, S., Rue, H. & Cumming, S. G. (2012). Hierarchical analysis of spatially autocorrelated data using integrated nested Laplace approximation. Methods in Ecology and Evolution, 3, 921–929.CrossRefGoogle Scholar
Beiler, K. J., Durall, D. M., Simard, S. W., Maxwell, S. A. & Kretzer, A. M. (2009). Architecture of the wood-wide web: Rhizopogon spp. Genets link multiple Douglas-fir cohorts. New Phytologist, 185, 543–553.CrossRefGoogle ScholarPubMed
Beisner, B. E., Haydon, D. & Cuddington, K. L. (2003). Alternative stable states in ecology. Frontiers in Ecology and the Environment, 1, 376–382.CrossRefGoogle Scholar
Bekker, M. F. & Malanson, G. P. (2008). Linear forest patterns in subalpine environments. Progress in Physical Geography, 32, 635–653.CrossRefGoogle Scholar
Bell, G., Lechowicz, M. J., Appenzeller, A. et al. (1993). The spatial structure of the physical environment. Oecologia, 96, 114–121.CrossRefGoogle ScholarPubMed
Bell, D. T., Plummer, J. A. & Taylor, S. K. (1993). Seed-germination ecology in southwestern Western-Australia. Botanical Review, 59, 24–73.CrossRefGoogle Scholar
Bellehumeur, C. & Legendre, P. (1997). Aggregation of sampling units: an analytical solution to predict variance. Geographical Analysis, 29, 258–266.CrossRefGoogle Scholar
Bellehumeur, C., Legendre, P. & Marcotte, D. (1997). Variance and spatial scales in a tropical rain forest: changing the size of sampling units. Plant Ecology, 130, 89–98.CrossRefGoogle Scholar
Benes, V. & Rataj, J. (2004). Stochastic Geometry: Selected Topics. Boston: Kluwer Academic Publisher.Google Scholar
Bengtsson, J., Angelstam, P., Elmqvist, T. et al. (2003). Reserves, resilience and dynamic landscapes. Ambio, 32, 389–396.CrossRefGoogle ScholarPubMed
Bergman, C. M., Schaefer, J. A. & Luttich, S. N. (2000). Caribou movement as a correlated random walk. Oecologia, 123, 364–374.CrossRefGoogle ScholarPubMed
Bertness, M. D. & Calloway, R. (1994). Positive interactions in communities. Trends in Ecology and Evolution, 9, 191–193.CrossRefGoogle ScholarPubMed
Beyer, H., Morales, J., Murray, D. & Fortin, M-J. (2013). The effectiveness of Bayesian state-space models for estimating behavioural states from movement paths. Methods in Ecology and Evolution, 4, 433–441.CrossRefGoogle Scholar
Bézier, P. (1977). Essai de définition numérique des courbes et des surfaces expérimentales. Thèse de doctorat ès-sciences, Université Pierre et Marie Curie, Paris.Google Scholar
Bienert, A.Queck, R., Schmidt, A., Berhofer, Ch., & Maas, H.-G. (2010). Voxel space analysis of terrestrial laser scans in forests for wind field modeling. Int. Arch. Photogramm., Rem. Sens. & Spat. Inf. Sci., 38, 92–97.Google Scholar
Biggs, N. L., Lloyd, E. & Wilson, R. J. (1976). Graph Theory, 1736–1936. Oxford: Oxford University Press.Google Scholar
Bini, L. M., Diniz, J. A. F., Rangel, T. F. L. V. et al. (2009). Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography, 32, 193–204.CrossRefGoogle Scholar
Bishop, Y. M. M., Fienberg, S. E. & Holland, P. W. (1975). Discrete Multivariate Analysis. Cambridge, MA: MIT Press.Google Scholar
Bivand, R. (1980). A Monte Carlo study of correlation coefficient estimation with spatially autocorrelated observations. Quaestiones Geographicae, 6, 5–10.Google Scholar
Bivand, R. S., Pebesma, E. J. & Gómez-Rubio, V. (2008). Applied Spatial Data Analysis with R. New York: Springer.Google Scholar
Bjørnstad, O. N. & Falck, W. (2001). Nonparametric spatial covariance functions: estimation and testing. Environmental and Ecological Statistics, 8, 53–70.CrossRefGoogle Scholar
Bjørnstad, O. N., Ims, R. A. & Lambin, X. (1999a). Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends in Ecology and Evolution, 14, 427–432.CrossRefGoogle ScholarPubMed
Bjørnstad, O. N., Stenseth, N. C. & Saitoh, T. (1999b). Synchrony and scaling in dynamics of voles and mice in northern Japan. Ecology, 80, 622–637.CrossRefGoogle Scholar
Blanchet, F. G., Legendre, P. & Borcard, D. (2008a). Modelling directional spatial processes in ecological data. Ecological Modelling, 215, 325–336.CrossRefGoogle Scholar
Blanchet, F. G., Legendre, P. & Borcard, D. (2008b). Forward selection of explanatory variables. Ecology, 89, 2623–2632.CrossRefGoogle ScholarPubMed
Blanchet, F. G., Legendre, P., Maranger, R., Monti, D. & Pepin, P. (2011). Modelling the effect of directional spatial ecological processes at different scales. Oecologia, 166, 357–368.CrossRefGoogle ScholarPubMed
Blonder, B. & Dornhaus, A. (2011). Time-ordered networks reveal limitations to information flow in ant colonies. PLoS ONE, 6(5), e20298.CrossRefGoogle ScholarPubMed
Bloomquist, E. W., Lemey, P. & Suchard, M. A. (2010). Three roads diverged? Routes to phylogeographic inference. Trends in Ecology and Evolution, 25, 626–632.CrossRefGoogle ScholarPubMed
Blundell, G. M., Maier, J. A. K. & Debevec, E. M. (2001). Linear home ranges: effects of smoothing, sample size and autocorrelation on kernel estimates. Ecological Monographs, 71, 469–489.CrossRefGoogle Scholar
Bolker, B. M., Brooks, M. E., Clark, C. J. et al. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution, 24, 127–135.CrossRefGoogle ScholarPubMed
Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. (1997) Self-organization in social insects. Trends in Ecology and Evolution, 12, 188–193.CrossRefGoogle ScholarPubMed
Boots, B. N. (2002). Local measures of spatial association. Écoscience, 9, 168–176.CrossRefGoogle Scholar
Boots, B. N. (2003). Developing local measures of spatial association for categorical data. Journal of Geographical Systems, 5, 139–160.CrossRefGoogle Scholar
Borcard, D. & Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51–68.CrossRefGoogle Scholar
Borcard, D. & Legendre, P. (2012). Is the Mantel correlogram powerful enough to be useful in ecological analysis? A simulation study. Ecology, 93, 1473–1481.CrossRefGoogle ScholarPubMed
Borcard, D., Legendre, P. & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055.CrossRefGoogle Scholar
Borcard, D., Gillet, F. & Legendre, P. (2011). Numerical Ecology with R. New York: Springer.CrossRefGoogle Scholar
Börger, L., Franconi, N., Ferretti, F. et al. (2006). An integrated approach to identify spatiotemporal and individual-level determinants of animal home range size. The American Naturalist, 168, 471–485.CrossRefGoogle ScholarPubMed
Bossenbroek, J. M., Nekola, J. C. & Kraft, C. E. (2001). Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecological Applications, 11, 1778–1788.CrossRefGoogle Scholar
Bourobou, D. N., Moussavou, H., Nzengue, E. et al. (2010). Applications for microsatellite markers in the management of forest trees. FAO Conference of Agricultural Biotechnology in Developing Countries, Guadalajara, 2010.Google Scholar
Bowersox, M. A. & Brown, D. G. (2001) Measuring the abruptness of patchy ecotones: a simulation-based comparison of patch and edge metrics. Plant Ecology, 156, 89–103.CrossRefGoogle Scholar
Box, G. & Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day.Google Scholar
Bradshaw, G. A. & Fortin, M.-J. (2000). Landscape heterogeneity effects on scaling and monitoring large areas using remote sensing data. Geographic Information Sciences, 6, 61–68.Google Scholar
Bradshaw, G. A. & Spies, T. (1992). Characterizing canopy gap structure in forests using wavelet analysis. Journal of Ecology, 80, 205–215.CrossRefGoogle Scholar
Brandtberg, T. (1999). Automatic individual tree based analysis of high spatial resolution aerial images on naturally regenerated boreal forests. Canadian Journal of Forest Research, 29, 1464–1478.CrossRefGoogle Scholar
Bray, J. R. (1956). Gap phase replacement in a Maple-Basswood forest. Ecology, 37, 598–600.CrossRefGoogle Scholar
Brodie, C., Houle, G. & Fortin, M.-J. (1995). Development of a Populus balsamifera clone in subarctic Québec reconstructed from spatial analyses. Journal of Ecology, 83, 309–320.CrossRefGoogle Scholar
Brooker, R. W., Maestre, F. T., Callaway, R. M. et al. (2008). Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 96, 18–34.Google Scholar
Brooks, C. P. (2006). Quantifying population substructure: extending the graph-theoretic approach. Ecology, 87, 864–872.CrossRefGoogle ScholarPubMed
Brown, D. G. (1998). Classification and boundary vagueness in mapping presettlement forest types. International Journal of Geographical Information Science, 12, 105–129.CrossRefGoogle Scholar
Brown, J. H. (1995). Macroecology. Chicago: University of Chicago Press.Google Scholar
Brunt, J. W. & Conley, W. (1990). Behavior of a multivariate algorithm for ecological edge detection. Ecological Modelling, 49, 179–203.CrossRefGoogle Scholar
Burnham, K. P. & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Heidelberg and New York: Springer.Google Scholar
Burrough, P. A. (1981). Fractal dimensions of landscapes and other environmental data. Nature, 294, 240–242.CrossRefGoogle Scholar
Burrough, P. A. (1986). Principles of geographical information systems for land resources assessment. Monographs on Soil and Resources Survey No. 12. Oxford: Clarendon Press.Google Scholar
Burrough, P. A. & Frank, A. (eds.) (1996). Geographic Objects with Indeterminate Boundaries. London: Taylor and Francis.Google Scholar
Burrough, P. A. & McDonnell, R. A. (1998). Principles of Geographical Systems. Oxford: Oxford University Press.Google Scholar
Cadenasso, M. L., Pickett, S. T. A., Weathers, K. C. et al. (2003). An interdisciplinary and synthetic approach to ecological boundaries. Bioscience, 53, 717–722.CrossRefGoogle Scholar
Cadman, M.D., Sutherland, D.A., Beck, G.G., Lepage, D. & Couturier, A.R. (eds.) (2007). Atlas of the Breeding Birds of Ontario, 2001–2005. Environment Canada, Ontario Field Ornithologists, Ontario Ministry of Natural Resources, and Ontario Nature, Toronto.Google Scholar
Cain, M. L. (1989). The analysis of angular data in ecological field studies. Ecology, 70, 1540–1543.CrossRefGoogle Scholar
Cain, M. L. (1990). Models of clonal growth in Solidago altissima. Journal of Ecology, 78, 27–46.CrossRefGoogle Scholar
Cain, M. L. & Damman, H. (1997). Clonal growth and ramet performance in the woodland herb, Asarum canadense. Journal of Ecology, 85, 883–897.CrossRefGoogle Scholar
Cain, M. L., Pacala, S. W., Silander, J. A. & Fortin, M.-J. (1995). Neighborhood models of clonal growth in the white clover, Trifolium repens. American Naturalist, 145, 888–917.CrossRefGoogle Scholar
Campbell, J. E., Franklin, S. B., Gibson, D. J. & Newman, J. A. (1998). Permutation of two-term local quadrat variance analysis: general concepts for interpretation of peaks. Journal of Vegetation Science, 9, 41–44.CrossRefGoogle Scholar
Candau, J.-N., Fleming, R. A. & Hopkin, A. (1998). Spatiotemporal patterns of large-scale defoliation caused by the spruce budworm in Ontario since 1941. Canadian Journal of Forest Research, 28, 1733–1741.CrossRefGoogle Scholar
Canny, J. (1986). A computational approach to edge detection. IEEE Transitional Pattern Analysis of Machine Intelligence, 8, 679–698.CrossRefGoogle ScholarPubMed
Cantwell, M. D. & Forman, T. T. (1993). Landscape graphs: ecological modeling with graph theory to detect configurations common to diverse landscapes. Landscape Ecology, 8, 239–255.CrossRefGoogle Scholar
Carl, G. & Kühn, I. (2008). Analyzing spatial ecological data using linear regression and wavelet analysis. Stochastic Environmental Research and Risk Assessment 22, 315–324.CrossRefGoogle Scholar
Carl, G. & Kühn, I. (2010). A wavelet-based extension of generalized linear models to remove the effect of spatial autocorrelation. Geographical Analysis, 42, 323–337.CrossRefGoogle Scholar
Carl, G., Dormann, C. F. & Kühn, I. (2008). A wavelet-based method to remove spatial autocorrelation in the analysis of species distributional data. Web Ecology, 8, 22–29.CrossRefGoogle Scholar
Carrer, M. & Urbinati, C. (2001). Spatial analysis of structural and tree-ring related parameters in a timberline forest in the Italian Alps. Journal of Vegetation Science, 12, 643–652.CrossRefGoogle Scholar
Casteigts, A., Flocchini, P., Quattrociocchi, W. & Santoro, N. (2011). Time-varying graphs and dynamic networks. 10th International Conference on ad hoc Networks and Wireless, July 2011.CrossRef
Cayuela, L., Benayas, J. M., Justel, A. & Salas-Rey, J. (2006). Modelling tree diversity in a highly fragmented tropical montane landscape. Global Ecology and Biogeography, 15, 602–613.CrossRefGoogle Scholar
Cerioli, A. (1997). Modified tests of independence in 2 × 2 tables with spatial data. Biometrics, 53, 619–628.CrossRefGoogle Scholar
Cerioli, A. (2002). Testing mutual independence between two discrete-valued spatial processes: a correction to Pearson chi-squared. Biometrics, 58, 888–897.CrossRefGoogle ScholarPubMed
Chan, J., Bailey, J. & Leckie, C. (2008). Discovering correlated spatio-temporal changes in evolving graphs. Knowledge and Information Systems, 16, 53–96.CrossRefGoogle Scholar
Chao, A. (2004). Species richness estimation. In Encyclopedia of Statistical Sciences, eds. Balakrishnan, N., Read, C. B. & Vidakovic, A.. New York: Wiley.Google Scholar
Chao, A., Chiu, C.-H. & Hsieh, T.C. (2012). Proposing a resolution to debates on diversity partitioning. Ecology, 93, 2037–2051.CrossRefGoogle ScholarPubMed
Chase, J. M., Kraft, N. B., Smith, K. G., Velland, M. & Inouye, B. D. (2011). Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere, 2, Article 24.CrossRefGoogle Scholar
Chatfield, C. (1975). The Analysis of Time Series: Theory and Practice. London: Chapman & Hall.CrossRefGoogle Scholar
Chilès, J.-P. & Delfiner, P. R. (2012). Geostatistics: Modeling Spatial Uncertainty, 2nd edn. New York: Wiley.CrossRefGoogle Scholar
Claramunt, C. & Thériault, M. (1997). Towards semantics for modeling spatio-temporal processes within GIS. In Advances in GIS Research II, eds. Kraak, M. J. & Molenaar, M., pp. 47–63. London: Taylor & Francis.Google Scholar
Clarke, K. R. & Warwick, R. M. (1998). A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology, 35, 523–531.CrossRefGoogle Scholar
Claussen, D. L., Finkler, M. S. & Smith, M. M. (1997). Thread trailing of turtles: methods for evaluating spatial movements and pathway structure. Canadian Journal of Zoology, 75, 2120–2128.CrossRefGoogle Scholar
Clements, F. E. (1916). Plant Succession. Washington D.C.: Carnegie Institute.Google Scholar
Cliff, A. D. & Ord, J. K. (1973). Spatial Autocorrelation. London: Pion.Google Scholar
Cliff, A. D. & Ord, J. K. (1981). Spatial Processes: Models and Applications. London: Pion.Google Scholar
Clifford, P., Richardson, S. & Hémon, D. (1989). Assessing the significance of correlation between two spatial processes. Biometrics, 45, 123–134.CrossRefGoogle ScholarPubMed
Cochran, W. (1954). Some methods for strengthening the common χ2 tests. Biometrics, 10, 417–451.CrossRefGoogle Scholar
Codling, E. A, Plank, M. J. & Benhamou, S. (2008). Random walks models in biology. Journal of the Royal Society Interface 5, 813–834.CrossRefGoogle ScholarPubMed
Cohn, R. D. (1999). Comparisons of multivariate relational structures in serially correlated data. Journal of Agricultural, Biological & Environmental Statistics, 4, 238–257.CrossRefGoogle Scholar
Collins, S. L., Glenn, S. M. & Roberts, D. W. (1993). The hierarchical continuum concept. Journal of Vegetation Science, 4, 149–156.CrossRefGoogle Scholar
Colwell, R. K. (2009). Biodiversity: Concepts, patterns and measurement. In The Princeton Guide to Ecology, ed. Levin, S. A., pp. 257–263. Princeton: Princeton University Press.Google Scholar
Condit, R., Ashton, P. S., Baker, P. et al. (2000). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414–1417.CrossRefGoogle ScholarPubMed
Connell, J. H. & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their roles in community stability and organization. American Naturalist, 111, 1119–1144.CrossRefGoogle Scholar
Connor, E. F & Simberloff, D. (1984). Neutral models of species co-occurrence patterns. In Ecological Communities: Conceptual Issues And The Evidence, eds. Strong, Jr. D. R. et al., pp. 316–331. Princeton: Princeton University Press.Google Scholar
Conover, W. J. (1980). Practical Nonparametric Statistics, 2nd edn. New York: Wiley.Google Scholar
Couteron, P. & Ollier, S. S. (2005). A generalized, variogram based framework for multi-scale ordination. Ecology, 86, 828–834.CrossRefGoogle Scholar
Couwenberg, J., & Joosten, H. (2005). Self-organization in raised bog patterning: the origin of microtope zonation and mesotype diversity. Journal of Ecology, 93, 1238–1248.CrossRefGoogle Scholar
Cox, D. R. (1955). Some statistical methods connected with series of events. Journal of the Royal Statistical Society Series B (Statistical Methodology), 17, 129–164.Google Scholar
Craft, M. E., Volz, E., Packer, C. & Meyers, L. A. (2010). Disease transmission in territorial populations: the small-world network of Serengeti lions. Journal of the Royal Society Interface, .
Crawley, M. J. (1986). Plant Ecology. Oxford: Blackwell.Google Scholar
Cressie, N. A. C. (1991). Statistics for Spatial Data. New York: Wiley.Google Scholar
Cressie, N. A. C. (1993). Statistics for Spatial Data, revised edn. New York: Wiley.Google Scholar
Cressie, N. A. C. (1996). Change of support and the modifiable areal unit problem. Geographical Systems, 3, 159–180.Google Scholar
Cressie, N. & Huang, H.-C. (1999). Classes of non-separable, spatio-temporal stationary covariance functions. Journal of the American Statistical Association, 94, 1330–1340.CrossRefGoogle Scholar
Cressie, N. & Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. Hoboken NJ: Wiley.Google Scholar
Cressie, N., Calder, C. A., Clark, J. S., Ver Hoef, J. M. & Wikle, C. K. (2009). Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecological Applications, 19, 553–570.CrossRefGoogle ScholarPubMed
Crist, T. O., Veech, J. A., Gerring, J. C. & Summerville, K. S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. American Naturalist, 162, 734–743.CrossRefGoogle ScholarPubMed
Csillag, F. & Kabos, S. (1996). Hierarchical decomposition of variance with applications in environmental mapping based on satellite images. Mathematical Geology, 28, 385–405.CrossRefGoogle Scholar
Csillag, F. & Kabos, S. (2002). Wavelets, boundaries, and the spatial analysis of landscape pattern. Écoscience, 9, 177–190.CrossRefGoogle Scholar
Csillag, F., Boots, B., Fortin, M.-J., Lowell, K. & Potvin, F. (2001). Multiscale characterization of boundaries and landscape ecological patterns. Geomatica, 55, 291–307.Google Scholar
Currie, D. J. (2007). Disentangling the roles of environment and space in ecology. Journal of Biogeography, 34, 2009–2011.CrossRefGoogle Scholar
Cushman, S., McKelvey, K., Hayden, J. & Schwartz, M. (2006). Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. The American Naturalist, 168, 486–499.CrossRefGoogle ScholarPubMed
Cutler, N. A., Belyea, L. R. & Dugmore, A. J. (2008). The spatiotemporal dynamics of a primary succession. Journal of Ecology, 96, 231–246.CrossRefGoogle Scholar
Dale, M. R. T. (1977). Graph theoretical analysis of the phytosociological structure of plant communities: the theoretical basis. Vegetatio, 34, 137–154.CrossRefGoogle Scholar
Dale, M. R. T. (1979). The analysis of patterns of zonation and phytosociological structure of seaweed communities. Ph. D. Thesis. Halifax, N.S.: Dalhousie University.Google Scholar
Dale, M. R. T. (1985). Graph theoretical methods for comparing phytosociological structures. Vegetatio, 63, 79–88.Google Scholar
Dale, M. R. T. (1986). Overlap and spacing of species’ ranges on an environmental gradient. Oikos, 47, 303–308.CrossRefGoogle Scholar
Dale, M. R. T. (1988). The spacing and intermingling of species boundaries on an environmental gradient. Oikos, 53, 351–356.CrossRefGoogle Scholar
Dale, M. R. T. (1995). Spatial pattern in communities of crustose saxicolous lichens. Lichenologist, 27, 495–503.CrossRefGoogle Scholar
Dale, M. R. T. (1999). Spatial Pattern Analysis in Plant Ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dale, M. R. T. (2000). Lacunarity analysis of spatial pattern: a comparison. Landscape Ecology, 15, 467–478.CrossRefGoogle Scholar
Dale, M. R. T. & Blundon, D. J. (1991). Quadrat covariance analysis and the scales of interspecific association during primary succession. Journal of Vegetation Science, 2, 103–112.CrossRefGoogle Scholar
Dale, M. R. T. & Fortin, M.-J. (2002). Spatial autocorrelation and statistical tests in ecology. Écoscience, 9, 162–167.CrossRefGoogle Scholar
Dale, M. R. T. & Fortin, M.-J. (2009). Spatial autocorrelation and statistical tests: some solutions. Journal of Agricultural, Biological, and Environmental Statistics, 14, 188–206.CrossRefGoogle Scholar
Dale, M. R. T. & Fortin, M.-J. (2010). From graphs to spatial graphs. Annual Review of Ecology, Evolution, and Systematics, 41, 21–38.CrossRefGoogle Scholar
Dale, M. R. T. & MacIsaac, D. A. (1989). New methods for the analysis of spatial pattern in vegetation. Journal of Ecology, 77, 78–91.CrossRefGoogle Scholar
Dale, M. R. T. & Mah, M. (1998). The use of wavelets for spatial pattern analysis in ecology. Journal of Vegetation Science, 9, 805–814.CrossRefGoogle Scholar
Dale, M. R. T. & Powell, R. D. (1994). Scales of segregation and aggregation of plants of different kinds. Canadian Journal of Botany, 72, 448–453.CrossRefGoogle Scholar
Dale, M. R. T. & Powell, R. D. (2001). A new method for characterizing point patterns in plant ecology. Journal of Vegetation Science, 12, 597–608.CrossRefGoogle Scholar
Dale, M. R. T. & Zbigniewicz, M. W. (1995). The evaluation of multi-species pattern. Journal of Vegetation Science, 6, 391–398.CrossRefGoogle Scholar
Dale, M. R. T. & Zbigniewicz, M. W. (1997). Spatial pattern in boreal shrub communities: effects of a peak in herbivore density. Canadian Journal of Botany, 75, 1342–1348.CrossRefGoogle Scholar
Dale, M. R. T., Blundon, D. J., MacIsaac, D. A. & Thomas, A. G. (1991). Multiple species effects and spatial autocorrelation in detecting species associations. Journal of Vegetation Science, 2, 635–642.CrossRefGoogle Scholar
Dale, M. R. T., Dixon, P., Fortin, M.-J. et al. (2002). The conceptual and mathematical relationships among methods for spatial analysis. Ecography, 25, 558–577.CrossRefGoogle Scholar
Darling, D. A. (1953). On a class of problems related to the random division of an interval. Annals of Mathematical Statistics, 24, 239–253.CrossRefGoogle Scholar
Darlington, P. J. (1957). Zoogeography: The Geographical Distribution of Animals. New York: Wiley.Google Scholar
Daubechies, I. (1992). Ten Lectures on Wavelets. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Daubechies, I. (1993). Different Perspectives on Wavelets. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
Davidar, P., Yogananad, K., Ganesh, T. & Devy, S. (2002). Distributions of forest birds and butterflies in the Andaman islands, Bay of Bengal: nested patterns and processes. Ecography, 25, 5–16.CrossRefGoogle Scholar
de Jong, P., Aarssen, L. W. & Turkington, R. (1980). The analysis of contact sampling data. Oecologia, 45, 322–324.CrossRefGoogle ScholarPubMed
de Solla, S. R., Bonduriansky, R. & Brooks, R. J. (1999). Eliminating autocorrelation reduces biological relevance of home range estimates. Journal of Animal Ecology, 68, 221–234.CrossRefGoogle Scholar
Deblauwe, V., Couteron, P., Lejeune, O., Bogaert, J. & Barbier, N. (2011). Environmental modulation of self-organized periodic vegetation patterns in Sudan. Ecography, 34, 990–1001.CrossRefGoogle Scholar
Del Mondo, G., Stell, J.G., Claramunt, C. & Thibaud, R. (2010). A graph model for spatio-temporal evolution. Journal of Universal Computer Science, 16, 1452–1477.Google Scholar
Delmelle, E. & Goovaerts, P. (2009). Second-phase sampling designs for non-stationary spatial variables. Geoderma, 153, 205–216.CrossRefGoogle ScholarPubMed
Demattei, C. & Cucala, L. (2011). Multiple spatio-temporal cluster detection for case event data: an ordering-based approach. Communications in Statistics – Theory & Methods, 40, 358–372.CrossRefGoogle Scholar
Dennis, B., Desharnais, R. A., Cushing, J. M., Henson, S. M. & Costantino, R. F. (2001). Estimating chaos and complex dynamics in an insect population. Ecological Monographs, 71, 277–303.CrossRefGoogle Scholar
Deutsch, C. V. & Journel, A. G. (1992). GSLIB. Geostatistical Software Library and User’s Guide. New York: Oxford University Press.Google Scholar
Dieckmann, U., Law, R. & Metz, J. A. J. (eds.) (2000). The Geometry of Ecological Interactions. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dietz, E. J. (1983). Permutation tests for association between two distance matrices. Systematic Zoology, 32, 21–26.CrossRefGoogle Scholar
Diggle, P. J. (1979). Statistical methods for spatial point patterns in ecology. In Spatial and Temporal Analysis in Ecology, eds. Cormack, R. M. & Ord, J. K., pp. 95–150. Fairland, MD: International Cooperative Publishing House.Google Scholar
Diggle, P. J. (1983). Statistical Analysis of Spatial Point Patterns. London: Academic Press.Google Scholar
Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns, 2nd edition. Hodder Arnold.Google Scholar
Diggle, P. J. & Chetwynd, A. G. (1991). Second-order analysis of spatial clustering for inhomogeneous populations. Biometrics, 47, 1155–1163.CrossRefGoogle ScholarPubMed
Diggle, P. J. & Justiniano, P. (2010). Model-based Geostatistics. New York: Springer.Google Scholar
Diggle, P. J. & Ribeiro, P. J. (2007). Model-Based Geostatistics. Springer, New York, USA.Google Scholar
Diggle, P. J., Chetwynd, A. G., Haggkvist, R. & Morris, S. (1995). Second-order analysis of space-time clustering. Statististical Methods in Medical Research, 4, 124–136.CrossRefGoogle ScholarPubMed
Diks, C., Takens, F. & DeGoede, J. (1997). Spatio-temporal chaos: a solvable model. Physica D, 104, 269–285.CrossRefGoogle Scholar
Diniz-Filho, J. A. F. & Bini, L. M. (2005). Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecology and Biogeography, 14, 177–185.CrossRefGoogle Scholar
Diniz-Filho, J. A. F., Bini, L. M. & Hawkins, B. A. (2003). Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography, 12, 53–64.CrossRefGoogle Scholar
Diniz-Filho, J. A. F., Nabout, J. C., Telles, M. P. D., Soares, T. N. & Rangel, T. (2009). A review of techniques for spatial modeling in geographical, conservation and landscape genetics. Genetics and Molecular Biology, 32, 203–211.CrossRefGoogle ScholarPubMed
Dixon, P. M. (2002). Nearest-neighbor contingency table analysis of spatial segregation for several species. Écoscience, 9, 142–151.CrossRefGoogle Scholar
Doak, P. (2000). Population consequences of restricted dispersal for an insect herbivore in a subdivided habitat. Ecology, 81, 1828–1841.CrossRefGoogle Scholar
Doebeli, M. & Ruxton, G. D. (1998). Stabilization through spatial pattern formation in metapopulations with long-range dispersal. Proceedings of the Royal Society of London Series B, 265, 1325–1332.CrossRefGoogle Scholar
Dong, P. (2009). Lacunarity analysis of raster datas ets and 1D, 2D, and 3D point patterns. Computers & Geosciences, 35, 2100–2110.CrossRefGoogle Scholar
Doob, J. L. (1996). The development of rigor in mathematical probability (1900–1950). The American Mathematical Monthly, 103, 586–595.Google Scholar
Dormann, C. F. (2006). Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography, 16, 129–138.CrossRefGoogle Scholar
Dormann, C. F. (2009). Response to Comment on “Methods to account for spatial autocorrelation in the analysis of species distributional data: a review”. Ecography, 32, 379–381.CrossRefGoogle Scholar
Dormann, C. F., McPherson, J. M., Araújo, M. B. et al. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30, 609–628.CrossRefGoogle Scholar
Dos Santos, D. A., Fernandez, H. R., Cuezzo, M. G. & Dominguez, E. (2008). Sympatry inference and network analysis in biogeography. Systematic Biology, 57, 432–448.CrossRefGoogle ScholarPubMed
Doty, M. S. & Archer, J. G. (1950). An experimental test of the tide factor hypothesis. American Journal of Botany, 37, 458–464.CrossRefGoogle Scholar
Doupanloup, I., Schneider, S. & Excoffier, L. (2002). A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11, 2571–2581.CrossRefGoogle Scholar
Drake, D. A. R. & Mandrak, N. E. (2010). Least-cost transportation networks predict spatial interaction of invasion vectors. Ecological Applications, 20, 2286–2299.CrossRefGoogle ScholarPubMed
Dray, S. (2011). A new perspecive about Moran’s I coefficient: spatial autocorrelation as a linear regression problem. Geographical Analysis, 43, 127–141.CrossRefGoogle Scholar
Dray, S., Legendre, P. & Peres-Neto, P. R. (2006). Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecological Modelling, 196, 483–493.CrossRefGoogle Scholar
Dray, S., Pélissier, R., Couteron, P. et al. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82, 257–275.CrossRefGoogle Scholar
Duczmal, L., Kulldorff, M. & Huang, L. (2006). Evaluation of spatial scan statistics for irregularly shaped clusters. Journal of Computational and Graphical Statistics, 15, 428–442.CrossRefGoogle Scholar
Dufresne, F., Bourget, E. & Bernatchez, L. (2002). Differential patterns of spatial divergence in microsatellite and allozyme alleles: further evidence for locus-specific selection in the acorn barnacle, Semibalanus balanoides?Molecular Ecology, 11, 113–123.CrossRefGoogle ScholarPubMed
Dungan, J. L. (2001). Scaling up and scaling down: relevance of the support effect on remote sensing of vegetation. In Modelling Scale in Geographical Information Science, eds. Tate, N. J. & Atkinson, P. M., pp. 231–235. New York: Wiley.Google Scholar
Dungan, J. L., Perry, J. N., Dale, M. R. T. et al. (2002). A balanced view of scale in spatial statistical analysis. Ecography, 25, 626–640.CrossRefGoogle Scholar
Dutilleul, P. (1993a). Spatial heterogeneity and the design of ecological field experiments. Ecology, 74, 1646–1658.CrossRefGoogle Scholar
Dutilleul, P. (1993b). Modifying the t test for assessing the correlation between two spatial processes. Biometrics, 49, 305–314.CrossRefGoogle Scholar
Dutilleul, P. R. L. (2011). Spatio-temporal Heterogeneity: Concepts and Analyses. Cambridge: Cambridge University Press.Google Scholar
Dutilleul, P., Stockwell, J. D., Frigon, D. & Legendre, P. (2000). The Mantel test versus Pearson’s correlation analysis: assessment of the differences for biological and environmental studies. Journal of Agricultural, Biological and Environmental Statistics, 5, 131–150.CrossRefGoogle Scholar
Dyer, R. J. & Nason, J. D. (2004). Population graphs: the graph theoretic shape of genetic structure. Molecular Ecology, 13, 1713–1727.CrossRefGoogle ScholarPubMed
Eddy, S. R. (2004). What is Bayesian statistics?Nature Biotechnology, 22, 1177–1178.CrossRefGoogle ScholarPubMed
Edgington, E. S. (1995). Randomization Tests, 3rd edn. New York: Marcel Dekker.Google Scholar
Edwards, G. & Fortin, M.-J. (2001). Cognitive view of spatial uncertainty. In Spatial Uncertainty in Ecology: Implications for Remote Sensing and GIS Applications, eds. Hunsaker, C., Goodchild, M., Friedl, M. & Case, T., pp. 133–157. New York: Springer-Verlag.CrossRefGoogle Scholar
Edwards, G. & Lowell, K. E. (1996). Modeling uncertainty in photointerpreted boundaries. Photogrammetric Engineering and Remote Sensing, 62, 337–391.Google Scholar
Efron, B. & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York: Chapman & Hall.CrossRefGoogle Scholar
Egbert, G. D. & Lettenmaier, D. P. (1986). Stochastic modeling of space-time structure of atmospheric chemical deposition. Water Resources Research, 22, 165–179.CrossRefGoogle Scholar
Ellner, S. & Turchin, P. (1995). Chaos in a noisy world: new methods and evidence from time-series analysis. American Naturalist, 145, 343–375.CrossRefGoogle Scholar
Epperson, B. K. (2003). Covariances among join-count spatial autocorrelation measures. Theoretical Population Biology, 64, 81–87.CrossRefGoogle ScholarPubMed
Erdös, P. & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Science, 5, 17–61.Google Scholar
Escudero, A., Iriondo, J. M. & Torres, M. E. (2003). Spatial analysis of genetic diversity as a tool for plant conservation. Biological Conservation, 113, 351–365.CrossRefGoogle Scholar
Evans, J. P. & Cain, M. L. (1995). A spatially explicit test of foraging behaviour in a clonal plant. Ecology, 76, 1147–1155.CrossRefGoogle Scholar
Everhart, S. E., Askew, A., Seymour, L., Holb, I. J. & Scherm, H. (2011). Characterization of three-dimensional spatial aggregation and association patterns of brown rot symptoms within intensively mapped sour cherry trees. Annals of Botany, 108, 1195–1202.CrossRefGoogle ScholarPubMed
Excoffier, L., Smouse, P. & Quattro, J. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.Google ScholarPubMed
Fagan, W. F. (2002). Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology, 83, 3243–3249.CrossRefGoogle Scholar
Fagan, W. F., Fortin, M.-J. & Soykan, C. (2003). Integrating edge detection and dynamic modeling in quantitative analyses of ecological boundaries. BioScience, 53, 730–738.CrossRefGoogle Scholar
Faghih, F. & Smith, M. (2002). Combining spatial and scale-space techniques for edge detection to provide a spatially adaptive wavelet-based noise filtering algorithm. IEEE Transactions on Image Processing, 11, 1069–1071.CrossRefGoogle ScholarPubMed
Fall, A., Fortin, M.-J., Manseau, M. & O’Brien, D. (2007). Spatial graphs: principles and applications for habitat connectivity. Ecosystems, 10, 448–461.CrossRefGoogle Scholar
Fattorini, S. (2002). Biogeography of the tenebrionid beetles (Coleoptera, Tenebrionidae) on the Aegean Islands (Greece). Journal of Biogeography, 29, 49–67.CrossRefGoogle Scholar
Fattorini, S. (2007). Non-randomness in the species-area relationship: testing the underlying mechanisms. Oikos, 116, 678–689.Google Scholar
Feeley, K. J., Gillespie, T. W., Lebbin, D. J. & Walter, H. S. (2007). Species characteristics associated with extinction vulnerability and nestedness rankings of birds in tropical forest fragments. Animal Conservation, 10, 493–501.CrossRefGoogle Scholar
Felsenstein, J. (1975). A pain in the torus: some difficulties with models of isolation by distance. The American Naturalist, 109, 359–368.CrossRefGoogle Scholar
Fischer, J. & Lindenmayer, D. B. (2007). Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography, 16, 265–280.CrossRefGoogle Scholar
Fisher, R. A. (1932). Statistical Methods for Research Workers, 4th edn. London: Oliver & Boyd.Google Scholar
Fisher, R. A. (1935). The mathematical distributions used in the common tests of significance. Econometrica, 3, 353–365.CrossRefGoogle Scholar
Fisher, R. A. (1970). Statistical Methods for Research Workers. Edinburgh: Oliver & Boyd.Google Scholar
Fitzpatrick, M. C., Preisser, E. L., Porter, A. et al. (2010). Ecological boundary detection using Bayesian areal wombling. Ecology, 91, 3448–3455.CrossRefGoogle ScholarPubMed
Foody, G. M. (2004). Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecology and Biogeography, 13, 315–320.CrossRefGoogle Scholar
Fortin, M.-J. (1992). Detection of ecotones: definition and scaling factors. Ph.D. thesis, Department of Ecology and Evolution, State University of New York at Stony Brook, 258 pages.
Fortin, M.-J. (1994). Edge detection algorithms for two-dimensional ecological data. Ecology, 75, 956–965.CrossRefGoogle Scholar
Fortin, M.-J. (1997). Effects of data types on vegetation boundary delineation. Canadian Journal of Forest Research, 27, 1851–1858.CrossRefGoogle Scholar
Fortin, M.-J. (1999a). Effects of sampling unit resolution on the estimation of the spatial autocorrelation. Écoscience, 6, 636–641.CrossRefGoogle Scholar
Fortin, M.-J. (1999b). The effects of quadrat size and data measurement on the detection of boundaries. Journal of Vegetation Science, 10, 43–50.CrossRefGoogle Scholar
Fortin, M.-J. & Dale, M. R. T. (2005). Spatial Analysis: A Guide for Ecologists. Cambridge: Cambridge University Press.Google Scholar
Fortin, M.-J. & Dale, M. R. T. (2009). Spatial autocorrelation in ecological studies: a legacy of solutions and myths. Geographical Analysis, 41, 392–397.CrossRefGoogle Scholar
Fortin, M.-J. & Drapeau, P. (1995). Delineation of ecological boundaries: comparisons of approaches and significance tests. Oikos, 72, 323–332.CrossRefGoogle Scholar
Fortin, M.-J. & Gurevitch, J. (2001). Mantel tests: spatial structure in field experiments. In Design and Analysis of Ecological Experiments, 2nd edn, eds. Scheiner, S. M. & Gurevitch, J., pp. 308–326. Oxford: Oxford University Press.Google Scholar
Fortin, M.-J. & Jacquez, G. M. (2000). Randomization tests and spatially autocorrelated data. Bulletin of the Ecological Society of America, 81, 201–205.Google Scholar
Fortin, M.-J. & Melles, S. J. (2009). Avian spatial responses to forest spatial heterogeneity at the landscape level: conceptual and statistical challenges. In Real World Ecology: Large-Scale and Long-Term Case Studies and Method, eds. Miao, S., Carstenn, S. & Nungesser, M., pp. 137–160. New York: Springer.CrossRefGoogle Scholar
Fortin, M.-J. & Payette, S. (2002). How to test the significance of the relation between spatially autocorrelated data at the landscape scale: a case study using fire and forest maps. Écoscience, 9, 213–218.CrossRefGoogle Scholar
Fortin, M.-J., Boots, B., Csillag, F. & Remmel, T. K. (2003). On the role of spatial stochastic models in understanding landscape indices in ecology. Oikos, 102, 203–212.CrossRefGoogle Scholar
Fortin, M.-J., Drapeau, P. & Jacquez, G. M. (1996). Quantification of the spatial co-occurrences of ecological boundaries. Oikos, 77, 51–60.CrossRefGoogle Scholar
Fortin, M.-J., Drapeau, P. & Legendre, P. (1989). Spatial autocorrelation and sampling design in plant ecology. Vegetatio, 83, 209–222.CrossRefGoogle Scholar
Fortin, M.-J., Jacquez, G. M. & Shipley, B. (2002). Computer-intense methods. In Encyclopedia of Environmetrics, eds. El-Shaarawi, A. & Pesgorsch, W. W., pp. 399–402. Chishester: Wiley.Google Scholar
Fortin, M.-J., Jacquez, G. M. & Shipley, B. (2012b). Computer-intense methods. In Encyclopedia of Environmetrics, 2nd edition, eds. El-Shaarawi, A. H. & Piegorsch, W.W., pp. 489–493. Chichester: Wiley.Google Scholar
Fortin, M.-J., James, P. M. A., MacKenzie, A., Melles, S.J. &. Rayfield, B. (2012a). Spatial statistics, spatial regression, and graph theory in ecology. Spatial Statistics, 1, 100–109.CrossRefGoogle Scholar
Fortin, M.-J., Keitt, T. H., Maurer, B. A., Taper, M. L., Kaufman, D. M. & Blackburn, T. M. (2005). Species ranges and distributional limits: pattern analysis and statistical issues. Oikos, 108, 7–17.CrossRefGoogle Scholar
Fortin, M.-J., Marineau, K. & Payette, S. (1999). Spatial vegetation diversity index along a postfire successional gradient in the northern boreal forest. Écoscience, 6, 204–213.CrossRefGoogle Scholar
Fortin, M.-J., Olson, R. J., Ferson, S. et al. (2000). Issues related to the detection of boundaries. Landscape Ecology, 15, 453–466.CrossRefGoogle Scholar
Fortuna, M. A. & Bascompte, J. (2008). The network approach in ecology. In Unity in Diversity: Reflections on Ecology after the Legacy of Ramon Margalef, eds. Valladares, F., Camacho, A., Elosegi, A., Estrada, M., Gili, J. M., Gracia, C. & Senar, J. C., pp. 371–393. Madrid: Fundación BBVA.Google Scholar
Fortuna, M. A., Garcia, C., Guimarães, P. R. & Bascompte, J. (2008). Spatial mating networks in insect-pollinated plants. Ecology Letters, 11, 490–498.CrossRefGoogle ScholarPubMed
Fortuna, M. A., Gómez-Rodriguez, C. & Bascompte, J. (2006). Spatial network structure and amphibian persistence in stochastic environments. Proceedings of the Royal Society of London Series B, Biological Sciences, 273, 1429–1434.CrossRefGoogle ScholarPubMed
Fotheringham, A. S. (2009). Geographically weighted regression. In The SAGE Handbook of Spatial Analysis, eds. Fotheringham, A. S. & Rogerson, P. A., pp. 243–253. London: SAGE Publications Ltd.CrossRefGoogle Scholar
Fotheringham, A. S. & Rogerson, P. A. eds. (2009). The SAGE Handbook of Spatial Analysis. Sage.CrossRefGoogle Scholar
Fotheringham, A. S. & Zhan, F. B. (1996). A comparison of three exploratory methods for cluster detection in spatial point patterns. Geographical Analysis, 28, 200–218.CrossRefGoogle Scholar
Fotheringham, A. S., Brunsdon, C. & Charlton, M. (2000). Quantitative Geography: Perspectives on Spatial Data Analysis. London: Sage Publications.Google Scholar
Fotheringham, A. S., Brunsdon, C. & Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Chichester: Wiley.Google Scholar
Fowler, H. W. & Fowler, F. G. (1976). The Concise Oxford Dictionary of Current English, 6th edn, ed. Sykes, J. B.. Oxford: Oxford University Press.Google Scholar
Foxall, R. & Baddeley, A. (2002). Nonparametric measures of association between a spatial point process and a random set, with geological applications. Applied Statistics, 51, 165–182.Google Scholar
Franco, M. & Harper, J. (1988). Competition and the formation of spatial pattern in spacing gradients: an example using Kochia scoparia. Journal of Ecology, 76, 959–974.CrossRefGoogle Scholar
Frelich, L. (2002). Forest Dynamics and Disturbance Regimes: Studies from Temperate Evergreen-Deciduous Forests. New York: Cambridge University Press.CrossRefGoogle Scholar
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32, 675–701.CrossRefGoogle Scholar
Fukushima, Y., Hiura, T. & Tanabe, S. I. (1998). Accuracy of the MacArthur–Horn method for estimating a foliage profile. Agricultural and Forest Methodology, 92, 203–210.CrossRefGoogle Scholar
Gabriel, K. R. & Sokal, R. R. (1969). A new statistical approach to geographic variation analysis. Systematic Ecology, 18, 259–270.Google Scholar
Galiano, E. F. (1982). Pattern detection in plant populations through the analysis of plant-to-all-plants distances. Vegetatio, 49, 39–43.CrossRefGoogle Scholar
Galiano, E. F. (1983). Detection of multi-species patterns in plant populations. Vegetatio, 53, 129–138.Google Scholar
García Molinos, J. & Donohue, I. (2011). Temporal variability within disturbance events regulates their effects on natural communities. Oecologia, 166, 795–806.CrossRefGoogle ScholarPubMed
Garroway, C. J., Bowman, J., Carr, D. & Wilson, P. J. (2008). Applications of graph theory to landscape genetics. Evolutionary Applications, 1, 620–630.Google ScholarPubMed
Gaston, K. J. & Blackburn, T. M. (2000). Patterns and Processes in Macroecology. Malden: Blackwell Publishing Company.CrossRefGoogle Scholar
Gauch, H. G. & Whittaker, R. H. (1972). Coenocline simulation. Ecology, 53, 446–451CrossRefGoogle Scholar
Gaucherel, C., Burel, F. & Baudry, J. (2007). Multiscale and surface pattern analysis of the effect of landscape pattern on carabid beetles distribution. Ecological Indicators, 7, 598–609.CrossRefGoogle Scholar
Gauthier, O. & Lapointe, F.-J. (2007). Seeing the trees for the network: consensus, information content, and superphylogenies. Systematic Biology, 56, 345–355.CrossRefGoogle Scholar
Gavrikov, V. & Stoyan, D. (1995). The use of marked point processes in ecological and environmental forest studies. Environmental and Ecological Statistics, 2, 331–344.CrossRefGoogle Scholar
Geary, R. C. (1954). The contiguity ratio and statistical mapping. The Incorporated Statistician, 5, 115–145.CrossRefGoogle Scholar
Gelfand, A. E. (2012). Hierarchical modeling for spatial data problems. Spatial Statistics, 1, 30–39.CrossRefGoogle ScholarPubMed
Gellert, W., Küstner, H., Hellwich, M. & Kästner, H. (1977). The VNR Concise Encyclopedia of Mathematics. New York: Van Nostrand Reinhold.CrossRefGoogle Scholar
Gering, J. C., Crist, T. O. & Veech, J. A. (2003). Additive partitioning of species diversity across multiple spatial scales: Implications for regional conservation of biodiversity. Conservation Biology, 17, 488–499.CrossRefGoogle Scholar
Gerrard, D. J. (1969). Competition quotient: a new measure of the competition affecting individual forest trees. Research Bulletin 20. Agricultural Experiment Station, Michigan State University.Google Scholar
Getis, A. (1991). Spatial interaction and spatial autocorrelation: a cross product approach. Environment and Planning A, 23, 1269–1277.CrossRefGoogle Scholar
Getis, A. & Boots, B. (1978). Models of Spatial Processes: An Approach to the Study of Point, Line and Area Patterns. Cambridge: Cambridge University Press.Google Scholar
Getis, A. & Franklin, J. (1987). Second-order neighborhood analysis of mapped point patterns. Ecology, 68, 473–477.CrossRefGoogle Scholar
Getis, A. & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24, 189–206.CrossRefGoogle Scholar
Getis, A. & Ord, J. K. (1996). Local spatial statistics: an overview. In Spatial Analysis: Modelling in a GIS Environment, eds. Longley, P. & Batty, M., pp. 261–277. Cambridge: GeoInformation International.Google Scholar
Gignoux, J., Camille, D. & Sebastien, B. (1999). Comparing the performances of Diggle’s tests of spatial randomness for small samples with and without edge-effect correction: application to ecological data. Biometrics, 55, 156–164.CrossRefGoogle ScholarPubMed
Gilbert, B. & Bennett, J. R. (2010). Partitioning variation in ecological communities: do the numbers add up?Journal of Applied Ecology, 47, 1071–1082.CrossRefGoogle Scholar
Gill, J. (2002). Bayesian Methods: A Social and Behavioral Sciences Approach. Boca Raton: Chapman & Hall/CRC.Google Scholar
Glaz, J., Naus, J. & Wallenstein, S. (2001). Scan Statistics. New York: Springer-Verlag.CrossRefGoogle Scholar
Gleason, H. A. (1927). Further views of the succession concept. Ecology 8, 299–326.CrossRefGoogle Scholar
Gleik, J. (1987). Chaos: Making a New Science. New York: Viking.Google Scholar
Glenn-Lewin, D. C. & van der Maarel, E. (1992). Patterns and processes of vegetation dynamics. In Plant Succession: Theory and Prediction, eds. Glenn-Lewin, D. C., Peet, R. K. & Veblen, T. T., pp. 11–59. London: Chapman & Hall.Google Scholar
Glenn-Lewin, D. C., Peet, R. K. & Veblen, T. T. eds. (1992). Plant Succession: Theory and Prediction. London: Chapman & Hall.Google Scholar
Gonzalez-Andujar, J. L. & Perry, J. N. (1993). Chaos, metapopulations and dispersal. Ecological Modelling, 65, 255–263.CrossRefGoogle Scholar
Good, P. (1993). Permutation Tests: A Practical Guide to Resampling Methods for Hypothesis Testing. New York: Springer-Verlag.Google Scholar
Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. New York: Oxford University Press.Google Scholar
Goovaerts, P. & Jacquez, G. M. (2004). Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: the case of lung cancer in Long Island, New York. International Journal of Health Geographics, 3, 14.CrossRefGoogle ScholarPubMed
Goovaerts, P. & Jacquez, G. M. (2005). Detection of temporal changes in the spatial distribution of cancer rates using local Moran’s I and geostatistically simulated spatial neutral models. Journal of Geographical Systems, 7, 137–159.CrossRefGoogle ScholarPubMed
Gordon, A. D. (1999). Classification. Monographs on Statistics and Applied Probability 82, 2nd edn. London: Chapman & Hall/CRC.Google Scholar
Goreaud, F. & Pélissier, R. (1999). On explicit formulas of edge effect correction for Ripley’s K-function. Journal of Vegetation Science, 10, 433–438.CrossRefGoogle Scholar
Gosz, J. R. (1993). Ecotone hierarchies. Ecological Applications, 3, 368–376.CrossRefGoogle ScholarPubMed
Gotelli, N. J. (2004). A taxonomic wish-list for community ecology. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 359, 585–597.CrossRefGoogle ScholarPubMed
Goulard, M., Pagès, L. & Cabanettes, A. (1995). Marked point process: using correlation functions to explore a spatial data set. Biometrical Journal, 37, 837–853.CrossRefGoogle Scholar
Grant, E. H.C., Lowe, W. H. & Fagan, W. F. (2007). Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters, 10, 165–175.CrossRefGoogle Scholar
Grant, P. R., & Schluter, D. (1984). Interspecific competition inferred from patterns of guild structure. In Ecological Communities: Conceptual Issues and the Evidence, eds. Strong, Jr. D. R. et al., pp. 201–233. Princeton: Princeton University Press.Google Scholar
Greig-Smith, P. (1961). Data on pattern within plant communities. I. The analysis of pattern. Journal of Ecology, 49, 695–702.CrossRefGoogle Scholar
Greig-Smith, P. (1983). Quantitative Plant Ecology, 3rd edn. Berkeley: University of California Press.Google Scholar
Griffith, D. A. (1981). Interdependence in space and time: numerical and interpretative considerations. In Dynamic Spatial Models, eds. Griffith, D. A. & MacKinnon, R. D., pp. 258–287. Netherlands: Sijthoff & Noordhoff.Google Scholar
Griffith, D. A. (1992). What is spatial autocorrelation? Reflection on the past 25 years of spatial statistics. L’Espace géographique, 3, 265–280.CrossRefGoogle Scholar
Griffith, D. A. (1996). Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying geo-referenced data. Canadian Geographer, 40, 351–367.CrossRefGoogle Scholar
Griffith, D. A. (2008). Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environment and Planning A, 40, 2751–2769.CrossRefGoogle Scholar
Griffith, D. A. & Paelinck, J. H. P. (2009). Specifying a joint space- and time-lag using a bivariate Poisson distribution. Journal of Geographical Systems, 11, 23–36.CrossRefGoogle Scholar
Griffith, D. A. & Peres-Neto, P. R. (2006). Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology, 87, 2603–2613.CrossRefGoogle ScholarPubMed
Grillet, M.-E., Barrera, R., Martínez, J.-E., Berti, J. & Fortin, M.-J. (2010a). Disentangling the effect of local and global spatial variation on a mosquito-borne infection in a neotropical heterogeneous environment. American Journal of Tropical Medicine and Hygiene, 82, 194–201.CrossRefGoogle Scholar
Grillet, M.-E., Jordan, G. J. & Fortin, M.-J. (2010b). State transition detection in the spatio-temporal incidence of malaria. Spatial and Spatio-Temporal Epidemiology Journal, 1, 251–259.CrossRefGoogle ScholarPubMed
Gross, T. & Blasius, B. (2008). Adaptive coevolutionary networks: a review. Journal of the Royal Society, Interface 5, 259–271.CrossRefGoogle ScholarPubMed
Guillot, G. & Rousset, F. (2013). Dismantling the Mantel tests. Methods in Ecology and Evolution, 4, 336–344.CrossRefGoogle Scholar
Guillot, G., Leblois, R., Coulon, A. & Frantz, A. C. (2009). Statistical methods in spatial genetics. Molecular Ecology, 18, 4734–4756.CrossRefGoogle ScholarPubMed
Guo, Q. & Kelly, M. (2004). Interpretation of scale in paired quadrat variance methods. Journal of Vegetation Science, 15, 763–770.CrossRefGoogle Scholar
Gustafson, E. J. (1998). Quantifying landscape spatial pattern: what is the state of the art?Ecosystems, 1, 143–156.CrossRefGoogle Scholar
Haas, S. E., Hooten, M. B, Rizzo, D. M. & Meentemeyer, R. K. (2011). Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecology Letters, 14, 1108–1116.CrossRefGoogle Scholar
Haase, P. (1995). Spatial pattern analysis in ecology based on Ripley’s K-function: introduction and methods of edge correction. Journal of Vegetation Science, 6, 575–582.CrossRefGoogle Scholar
Haining, R. P. (1978). The moving average model for spatial interaction. Transactions of the Institute for British Geographers, NS3, 202–225.CrossRefGoogle Scholar
Haining, R. P. (1990). Spatial Data Analysis in the Social and Environmental Sciences. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Haining, R. P. (1991). Bivariate correlation with spatial data. Geographical Analysis, 23, 210–227.CrossRefGoogle Scholar
Haining, R. P. (2003). Spatial Data Analysis: Theory and Practice. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hall, K. R. & Maruca, S. L. (2001). Mapping a forest mosaic: a comparison of vegetation and songbird distributions using geographic boundary analysis. Plant Ecology, 156, 105–120.CrossRefGoogle Scholar
Halley, J. D. & Winkler, D. A. (2008). Consistent concepts of self-organization and self-assembly. Complexity, 14, 10–17.CrossRefGoogle Scholar
Halley, J. M., Hartley, S., Kallimanis, A. S. et al. (2004). Uses and abuses of fractal methodology in ecology. Ecology Letters, 7, 254–271.CrossRefGoogle Scholar
Handcock, R. & Csillag, F. (2002). Ecoregionalization assessment: spatio-temporal analysis of net primary production across Ontario. Écoscience, 9, 219–230.CrossRefGoogle Scholar
Hansen, A. & di Castri, F. (1992). Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows. New York: Springer-Verlag.CrossRefGoogle Scholar
Hanski, I. (2009). Metapopulations and spatial population processes. In The Princeton Guide to Ecology, ed. Levin, S. A., pp. 177–185. Princeton: Princeton University Press.Google Scholar
Hanski, I. & Woiwod, I. P. (1993). Spatial synchrony in the dynamics of moth and aphid populations. Journal of Animal Ecology, 62, 656–668.CrossRefGoogle Scholar
Harary, F. (1967). Topological concepts in graph theory. In A Seminar on Graph Theory, ed. Harary, F., pp. 13–24. New York: Holt, Rinehart & Winston.Google Scholar
Harary, F. (1969). Graph Theory. Reading, MA: Addison-Wesley.CrossRefGoogle Scholar
Harary, F. & Gupta, G. (1997). Dynamic graph models. Mathematical and Computer Modelling, 25, 79–87.CrossRefGoogle Scholar
Hargrove, W. W., Hoffman, F. M. & Schwartz, P. M. (2002). A fractal landscape realizer for generating synthetic maps. Conservation Ecology, 6, 2. Online .CrossRefGoogle Scholar
Harper, K. A., Macdonald, S. E., Burton, P. et al. (2005). Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19, 768–782.CrossRefGoogle Scholar
Harrison, P. J., Hanski, I. & Ovaskainen, O. (2011). Bayesian state-space modeling of metapopulation dynamics in the Glanville fritillary butterfly. Ecological Monographs, 8, 581–598.CrossRefGoogle Scholar
Harrison, S., Davies, K. F., Safford, H. D. & Veirs, J. H. (2006). Beta diversity and the scale-dependence of the productivity-diversity relationship: a test in the Californian serpentine flora. Journal of Ecology, 94, 110–117.CrossRefGoogle Scholar
Harvey, E. & Miller, T. E. (1996). Variance in composition of inquiline communities in leaves of Sarracenia purpurea L. on multiple spatial scales. Oecologia, 108, 562–566.CrossRefGoogle ScholarPubMed
Hastings, A. (2009). Biological chaos and complex dynamics. In The Princeton Guide to Ecology, ed. Levin, S. A., pp. 172–176. Princeton: Princeton University Press.Google Scholar
Heagerty, P. J. & Lumley, T. (2000). Window subsampling of estimating functions with application to regression models. Journal of the American Statistical Society, 95, 197–211.CrossRefGoogle Scholar
Hedley, S. L. & Buckland, S. T. (2004). Spatial models for line transect sampling. Journal of Agricultural, Biological and Environmental Statistics, 9, 181–199.CrossRefGoogle Scholar
Heino, J. & Muotka, T. (2005). Highly nested snail and clam assemblages in boreal lake littorals: Roles of isolation, area, and habitat suitability. Ecoscience, 12, 141–146.CrossRefGoogle Scholar
Hendry, R. J. & McGlade, J. M. (1995). The role of memory in ecological systems. Proceedings of the Royal Society of London Series B, Biological Sciences, 259, 153–159.CrossRefGoogle Scholar
Henebry, G. M. (1995). Spatial model error analysis using autocorrelation indices. Ecological Modelling, 82, 75–91.CrossRefGoogle Scholar
Hengl, T., Heuvelink, G. B. M. & Rossiter, D. G. (2007). About regression-kriging: from equations to case studies. Computers and Geosciences, 33, 1301–1315.CrossRefGoogle Scholar
Hengl, T., Heuvelink, G. B. M. & Stein, A. (2004). A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120, 75–93.CrossRefGoogle Scholar
Higashi, M., Yamamura, N., Abe, T. & Burns, T. P. (1991). Why don’t all termite species have a sterile worker caste?Proceedings of the Royal Society of London Series B, Biological Sciences, 246, 25–29.CrossRefGoogle ScholarPubMed
Hill, M. O. (1973). The intensity of spatial pattern in plant communities. Journal of Ecology, 61, 225–235.CrossRefGoogle Scholar
Hoagland, B. W. & Collins, S. L. (1997). Heterogeneity in shortgrass prairie vegetation: the role of playa lakes. Journal of Vegetation Science, 8, 277–286.CrossRefGoogle Scholar
Holden, Z. A. & Evans, J. S. (2010). Using fuzzy C-means and local autocorrelation to cluster satellite-inferred burn severity classes. International Journal of Wildland Fire, 19, 853–860.CrossRefGoogle Scholar
Holland, M. M., Risser, P. G. & Naiman, R. J. (eds.) (1991). Ecotones. New York: Chapman & Hall.CrossRefGoogle Scholar
Holyoak, M., Leibold, M. A. & Holt, R. D. eds. (2005). Metacommunities: Spatial Dynamics and Ecological Communities. Chicago: University of Chicago Press.Google Scholar
Hope, A. C. A. (1968). A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society B, 30, 582–598.Google Scholar
Hopkins, B. (1957). Pattern in the plant community. Journal of Ecology, 45, 451–463.CrossRefGoogle Scholar
Hothorn, T., Müller, J., Schröder, B., Kneib, T. & Brandl, R. (2011). Decomposing environmental, spatial, and spatiotemporal components of species distributions. Ecological Monographs, 81, 329–347.CrossRefGoogle Scholar
Hubert, L. J., & Golledge, R. G. (1981). A heuristic method for the comparison of related structures. Journal of Mathematical Psychology, 23, 214–226.CrossRefGoogle Scholar
Hudak, A. T., Lefsky, M. A., Cohen, W. B. & Berterretche, M. (2002). Integration of LiDAR and Landsat ETM plus data for estimating and mapping forest canopy height. Remote Sensing of Environment, 82, 397–416.CrossRefGoogle Scholar
Hufkens, K., Scheunders, P. & Ceulemans, R. (2009). Ecotones in vegetation ecology: methodologies and definitions revisited. Ecological Research, 24, 977–986.CrossRefGoogle Scholar
Hughes, J.S., Fortin, M.-J., Nealis, V. & Régnière, J. (2014). Pollen cone production in jack pine: spatial and temporal patterns subject to natural disturbance by the jack pine budworm. Candeain Journal of Forest Research, 44, 195–211.CrossRefGoogle Scholar
Hui, C. (2009). On the scaling patterns of species spatial distribution and association. Journal of Theoretical Biology, 261, 481–487.CrossRefGoogle ScholarPubMed
Hui, C., Veldtman, R. & McGeoch, M. (2010). Measures, perceptions and scaling patterns of aggregated species distributions. Ecography, 33, 95–102.CrossRefGoogle Scholar
Hunsaker, C., Goodchild, M., Friedl, M. & Case, T., eds. (2001). Spatial Uncertainty in Ecology. Implications for Remote Sensing and GIS Applications. New York: Springer-Verlag.Google Scholar
Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187–211.CrossRefGoogle Scholar
Huson, D. H. & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.CrossRefGoogle ScholarPubMed
Huston, M. A. (1994). Biological Diversity: The Coexistence of Species on Changing Landscapes. New York: Cambridge University Press.Google Scholar
Ichinose, S. (2001). Transient structures of wave patterns arising in the wave regeneration of subalpine coniferous forests. Physics Reviews, E64, 061903.Google Scholar
Illian, J., Penttinen, A. & Stoyan, D. (2008). Statistical Analysis and Modeling of Spatial Point Patterns. Chichester: Wiley.Google Scholar
Ings, T. C., Montoya, J. M., Bascompte, J. et al. (2009). Ecological networks–beyond food webs. Journal of Animal Ecology, 78, 253–269. Not seen, author?CrossRefGoogle ScholarPubMed
Isaaks, E. H. & Srivastava, R. M. (1989). An Introduction to Applied Geostatistics. Oxford: Oxford University Press.Google Scholar
Ives, A. R. & Zhu, J. (2006). Statistics for correlated data: phylogenies, space, and time. Ecological Applications, 16: 20–32.CrossRefGoogle ScholarPubMed
Iyengar, V. S. (2005). Space-time clusters with flexible shapes. Morbidity and Mortality Weekly Report, 54 (Supplement), 71–76.Google ScholarPubMed
Jacquemyn, H., Honnay, O. & Pailler, T. (2007). Range size variation, nestedness, and species turnover of orchid species along an altitudinal gradient on Reunion Island: implications for conservation. Biological Conservation, 136, 388–397.CrossRefGoogle Scholar
Jacquez, G. M. (1995). The map comparison problem: tests for the overlap of geographical boundaries. Statistical Medicine, 14, 2343–2361.CrossRefGoogle Scholar
Jacquez, G. M. (1996). A k nearest neighbour test for space–time interaction. Statistical Medicine, 15, 1935–1949.3.0.CO;2-I>CrossRefGoogle Scholar
Jacquez, G. M., Kaufmann, A. & Goovaerts, P. (2008). Boundaries, links and clusters: a new paradigm in spatial analysis?Environmental and Ecological Statistics, 15, 403–419.CrossRefGoogle ScholarPubMed
Jacquez, G. M., Maruca, S. L. & Fortin, M.-J. (2000). From fields to objects: areview of geographic boundary analysisJournal of Geographical Systems, 2, 221–241.CrossRefGoogle Scholar
James, P. M. A. & Fortin, M.-J. (2012). Ecosystems and spatial patterns. In Encyclopedia of Sustainability Science and Technology, ed. Meyers, R. A., pp. 3326–3342. Springer Science+Business Media.CrossRefGoogle Scholar
James, P. M. A., Fleming, R. A. & Fortin, M.-J. (2010). Identifying significant scale-specific spatial boundaries using wavelets and null models: spruce budworm defoliation in Ontario, Canada as a case study. Landscape Ecology, 25, 873–887.CrossRefGoogle Scholar
James, P. M. A., Fortin, M.-J., Fall, A., Kneeshaw, D. & Messier, C. (2007). The effects of spatial legacies following shifting management practices and fire on boreal forest age structure. Ecosystems, 10, 1261–1277.CrossRefGoogle Scholar
James, P. M. A., Sturtevant, B. R., Townsend, P., Wolter, P. & Fortin, M.-J. (2011). Two-dimensional wavelet analysis of spruce budworm host basal area in the Border Lakes landscape. Ecological Applications, 21, 2197–2209.CrossRefGoogle ScholarPubMed
Jelinski, D. E. & Wu, J. (1996). The modifiable areal unit problem and implications for landscape ecology. Landscape Ecology, 3, 129–140.CrossRefGoogle Scholar
Jenkins, G. M. & Watts, D. G. (1968). Spectral Analysis and Its Applications. San Francisco: Holden-Day.Google Scholar
Jetz, W., Rahbek, C. & Lichstein, J. W. (2005). Local and global approaches to spatial data analysis in ecology. Global Ecology & Biogeography, 14, 97–98.CrossRefGoogle Scholar
Johnson, E. A. (1992). Fire and Vegetation Dynamics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Johnson, J. B. & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19, 101–108.CrossRefGoogle ScholarPubMed
Johnston, C. A., Pastor, J. & Pinay, G. (1992). Quantitative methods for studying landscape boundaries. In Landscape Boundaries, eds. Hansen, A. J. & di Castri, F., pp. 107–125. New York: Springer-Verlag.CrossRefGoogle Scholar
Jombart, T., Devillard, S., Dufour, A. B. & Pontier, D. (2008). Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity, 101, 92–103.CrossRefGoogle ScholarPubMed
Jombart, T., Dray, S. & Dufour, A. B. (2009). Finding essential scales of spatial variation in ecological data: A multivariate approach. Ecography, 32, 161–168.CrossRefGoogle Scholar
Jones, D. D. (1977). Catastrophe theory applied to ecological systems. Simulation, 29, 1–15.CrossRefGoogle Scholar
Jones, E. W. (1945). The structure and reproduction of the virgin forest of the north temperate zone. New Phytologist, 44, 130–148.CrossRefGoogle Scholar
Jongman, R. H., ter Braak, C. J. F. & Van Tongeren, O. F. R. eds. (1995). Data Analysis in Community and Landscape Ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Jordan, G. J., Fortin, M.-J. & Lertzman, K. P. (2008). Spatial pattern and persistence of historical fire boundaries in southern interior British Columbia. Environmental and Ecological Statistics, 15, 523–535.CrossRefGoogle Scholar
Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375.CrossRefGoogle Scholar
Jost, L. (2007). Partitioning diversity into alpha and beta components. Ecology, 88, 2427–2439.CrossRefGoogle ScholarPubMed
Journel, A. G. & Huijbregts, C. (1978). Mining Geostatistics. London: Academia Press.Google Scholar
Juhasz-Nagy, P (1993). Notes on compositional diversity. Hydrobiologia, 249, 173–182.CrossRefGoogle Scholar
Kabos, S. & Csillag, F. (2002). The analysis of spatial association of nominal data on regular lattice by join-count-statistic without first-order homogeneity. Computers and Geosciences, 28, 901–910.CrossRefGoogle Scholar
Kamarianakis, Y. & Prastacos, P. (2003). Spatial time-series modeling: a review of the proposed methodologies. Regional Economics Applications Laboratory (REAL) Discussion Papers, REAL 03-T-19.
Kareiva, P. & Shigesada, N. (1983). Analyzing insect movement as a correlated random walk. Oecologia, 56, 234–238.CrossRefGoogle ScholarPubMed
Keddy, P. A. (1991). Working with heterogeneity: an operator’s guide to environmental gradients. In Ecological Heterogeneity, eds. Kolasa, J. and Pickett, S. T. A.. New York: Springer Verlag.Google Scholar
Keitt, T. H. & Fischer, J. (2006). Detection of sale-specific community dynamics using wavelets. Ecology, 87, 2895–2904.CrossRefGoogle ScholarPubMed
Keitt, T. H. & Urban, D. L. (2005). Scale-specific inference using wavelet. Ecology, 86, 2497–2504.CrossRefGoogle Scholar
Keitt, T. H., Urban, D. L. & Milne, B. T. (1997). Detecting critical scales in fragmented landscapes. Conservation Ecology [online], 1, 4. URL: .CrossRefGoogle Scholar
Kelly, R. P., Oliver, T. A. & Sivasundar, A. (2010). A method for detecting population genetic structure in diverse, high gene-flow species. Journal of Heredity 101, 423–436.CrossRefGoogle ScholarPubMed
Kempe, D., Kleinberg, J. & Kumar, A. (2002). Connectivity and inference problems in temporal networks. Journal of Computer and System Sciences, 64, 820–842.CrossRefGoogle Scholar
Kenkel, N. C. (1993). Modeling Markovian dependence in populations of Aralia nudicaulis. Ecology, 74, 1700–1706.CrossRefGoogle Scholar
Kenkel, N. C. & Walker, D. J. (1993). Fractals and ecology. Abstracta Botanica, 17, 53–70.Google Scholar
Kenkel, N. C., Hendrie, M. L. & Bella, I. E. (1997). A long-term study of Pinus banksiana population dynamics. Journal of Vegetation Science, 8, 241–254.CrossRefGoogle Scholar
Kidd, D. M. & Ritchie, M. G. (2006). Phylogeographic information systems: putting the geography into phylogeography. Journal of Biogeography, 33, 1851–1865.CrossRefGoogle Scholar
Kimura, M. & Crow, J. F. (1964). Number of alleles that can be maintained in a finite population. Genetics, 49, 725–738.Google Scholar
Kingman, J. F. C. (1993). Poisson Processes. Oxford: Oxford University Press.Google Scholar
Kirkpatrick, D. G. & Radke, J. D. (1985) A framework for computational morphology. Computational Geometry, Machine Intelligence and Pattern Recognition, 2, 217–248.Google Scholar
Kneitel, J. M. & Miller, T. E. (2003) Dispersal rates affect species composition in metacommunities of Sarracenia purpurea inquilines. American Naturalist, 162, 165–171.CrossRefGoogle ScholarPubMed
Knox, E. G. (1964). The detection of space-time interactions. Applied Statistics, 13, 25–29.CrossRefGoogle Scholar
Koen, E. L., Garroway, C. J., Wilson, P. J. & Bowman, J. (2010). The effect of map boundary on estimates of landscape resistance to animal movement. PLoS One 5(7): e11785.CrossRefGoogle ScholarPubMed
Koenig, W. D. & Knops, J. M. (1998). Testing for spatial autocorrelation in ecological time series. Ecography, 21, 423–429.CrossRefGoogle Scholar
Kolaczyk, E. D. (2009). Statistical Analysis of Network Data. New York: Springer.CrossRefGoogle Scholar
Koleff, P., Gaston, K. J. & Lennon, J. J. (2003). Measuring beta diversity for presence absence data. Journal of Animal Ecology, 72, 367–382.CrossRefGoogle Scholar
König, D., Carvajal-Gonzalez, S., Downs, A. M., Vassy, J. & Rigaut, J. P. (1991). Modeling and analysis of 3-D arrangements of particles by point processes with examples of application to biological data obtained by confocal scanning light microscopy. Journal of Microscopy, 161, 405–433.CrossRefGoogle Scholar
Kost, C., de Olieira, E. G., Knoch, T. A. & Wirth, R. (2005). Spatio-temporal permanence and plasticity of foraging trails in young and mature leaf-cutting ant colonies (Atta spp.). Journal of Tropical Ecology, 21, 677–688.CrossRefGoogle Scholar
Kostakos, V. (2009). Temporal graphs. Physica A, 388, 1007–1023.CrossRefGoogle Scholar
Koutaniemi, L. (1999). Twenty-one years of string movements on the Liippasuo aapa mire, Finland. Boreas, 28, 521–530.CrossRefGoogle Scholar
Krebs, C. J. (2002). Ecology: The Experimental Analysis of Distribution and Abundance: Hands-On Field Package, 5th edn. San Francisco, CA: Prentice Hall.Google Scholar
Krebs, C. J., Boutin, S. & Boonstra, R. (2001). Ecosystem Dynamics of the Boreal Forest: The Kluane Project. Oxford: Oxford University Press.Google Scholar
Krige, D. G. (1966). Two-dimensional weighted moving average trend surfaces for ore-evaluation. Journal of the South Africa Institute of Mining and Metallurgy, 66, 13–38.Google Scholar
Kulldorff, M. (1997). A spatial scan statistic. Communications in statistics: Theory and Methods. 26: 1481–1496.CrossRefGoogle Scholar
Kulldorff, M., Athas, W., Feuer, E., Miller, B. A. & Key, C. (1998). Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos. American Journal of Public Health, 88, 1377–1380.CrossRefGoogle ScholarPubMed
Kuldorff, M., Heffernan, R., Hartman, J., Assunção, R. M. & Mostashari, F. (2005). A space-time permutation scan statistic for the early detection of disease outbreaks. PLoS Medicine, 2, 216–224.CrossRefGoogle Scholar
Lahiri, S. N. (1999). Theoretical comparisons of block bootstrap methods. The Annals of Statistics, 27, 386–404.CrossRefGoogle Scholar
Lambin, X., Elston, D. A., Petty, S. J. & MacKinnon, J. L. (1998). Spatial asynchrony and periodic traveling waves in cyclic populations of field voles. Proceedings of the Royal Society of London Series B, 265, 1491–1496.CrossRefGoogle Scholar
Lamour, A., Termorshuizen, A. J., Volker, D. & Jeger, M. J. (2007). Network formation by rhizomorphs of Armillaria lutea in natural soil: their description and ecological significance. FEMS Microbial Ecology, 62, 222–232.CrossRefGoogle ScholarPubMed
Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos, 76, 5–13.CrossRefGoogle Scholar
Lande, R., Engen, S. & Sather, B. E. (2003). Stochastic Population Dynamics in Ecology and Conservation. Oxford: Oxford University Press.CrossRefGoogle Scholar
Lantuéjoul, C. (2002). Geostatistical Simulation, Models, and Algorithms. Berlin: Springer.CrossRefGoogle Scholar
Law, R., Herben, T. & Dieckmann, U. (1997). Non-manipulative estimates of competition coefficients in a montane grassland community. Journal of Ecology, 85, 505–517.CrossRefGoogle Scholar
Ledo, A., Condés, S. & Montes, F. (2011). Intertype mark correlation function: A new tool for the analysis of species interactions. Ecological Modelling, 222, 2580–2587.CrossRefGoogle Scholar
Leduc, A., Drapeau, P., Bergeron, Y. & Legendre, P. (1992). Study of spatial components of forest cover using partial Mantel tests and path analysis. Journal of Vegetation Science, 3, 69–78.CrossRefGoogle Scholar
Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm?Ecology, 74, 1659–1673.CrossRefGoogle Scholar
Legendre, P. (2000). Comparison of permutation methods for the partial correlation and partial Mantel tests. Journal of Statistical Computer Simulation, 67, 37–73.CrossRefGoogle Scholar
Legendre, P. (2008). Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. Journal of Plant Ecology, 1, 3–8.CrossRefGoogle Scholar
Legendre, P. & De Cáceres, M. (2013). Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters, 16, 951–963.CrossRefGoogle ScholarPubMed
Legendre, P. & Fortin, M.-J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80, 107–138.CrossRefGoogle Scholar
Legendre, P. & Fortin, M.-J. (2010). Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources, 10, 831–844.CrossRefGoogle ScholarPubMed
Legendre, P. & Legendre, L. (1998). Numerical Ecology, 2nd English edn. Amsterdam: Elsevier.Google Scholar
Legendre, P. & Legendre, L. (2012). Numerical Ecology, 3rd English edn. Amsterdam: Elsevier.Google Scholar
Legendre, P. & Troussellier, M. (1988). Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limnology and Oceanography, 33, 1055–1067.CrossRefGoogle Scholar
Legendre, P., Borcard, D., & Peres-Neto, P.R. (2005). Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs, 75, 435–450.CrossRefGoogle Scholar
Legendre, P., Dale, M. R. T., Fortin, M.-J., Casgrain, P. & Gurevitch, J. (2004). Effects of spatial structures on the results of field experiments. Ecology, 85, 3202–3214.CrossRefGoogle Scholar
Legendre, P., Dale, M. R. T., Fortin, M.-J. et al. (2002). The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography, 25, 601–615.CrossRefGoogle Scholar
Legendre, P., Lapointe, F.-J. & Casgrain, P. (1994). Modeling brain evolution from behavior: a permutational regression approach. Evolution, 48, 1487–1499.CrossRefGoogle ScholarPubMed
Legendre, P., Sokal, R. R., Oden, N. L., Vaudor, A. & Kim, J. (1990). Analysis of variance with spatial autocorrelation in both the variable and the classification criterion. Journal of Classification, 7, 53–75.CrossRefGoogle Scholar
Leibold, M. A. (2009). Spatial and metacommunity dynamics in biodiversity. In The Princeton Guide to Ecology, ed. Levin, S. A., pp. 312–319. Princeton: Princeton University Press.Google Scholar
Leitão, A. B., Miller, J., Ahern, J. & McGarigal, K. (2006). Measuring Landscapes: A Planner’s Handbook. Washington, D.C.: Island Press.Google Scholar
Lejeune, O. & Tlidi, M. (1999). A model for the explanation of vegetation stripes (tiger bush). Journal of Vegetation Science, 10, 201–208.CrossRefGoogle Scholar
Lele, S. (1991). Jackknifing linear estimating equations: asymptotic theory and applications in stochastic processes. Journal of the Royal Statistical Society B, 53, 253–267.Google Scholar
Lennon, J. J. (2000). Red-shifts and red herrings in geographical ecology. Ecography 23, 101–113.CrossRefGoogle Scholar
Lesne, A. (2006). Complex networks: from graph theory to biology. Letters in Mathematical Physics, 78, 235–262.CrossRefGoogle Scholar
Leung, B., Bossenbroek, J. M. & Lodge, D. M. (2006). Boats, pathways, and aquatic biological invasions: estimating dispersal potential with gravity models. Biology Invasions, 8, 241–254.CrossRefGoogle Scholar
Leung, Y. (1987). On the imprecision of boundaries. Geographical Analysis, 19, 125–151.CrossRefGoogle Scholar
Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967.CrossRefGoogle Scholar
Levin, S. A. (2000). Multiple scales and the maintenance of biodiversity. Ecosystems, 3, 498–506.CrossRefGoogle Scholar
Levin, S. A. ed. (2009). The Princeton Guide to Ecology. Princeton: Princeton University Press.CrossRefGoogle Scholar
Li, H. & Reynolds, J. F. (1995). On definition and quantification of heterogeneity. Oikos, 73, 280–284.CrossRefGoogle Scholar
Liang, S. D., Banerjee, S. & Carlin, B. P. (2009) Bayesian wombling for spatial point processes. Biometrics, 65, 1243–1253.CrossRefGoogle ScholarPubMed
Lichstein, J. W. (2007). Multiple regression on distance matrices: A multivariate spatial analysis tool. Plant Ecology, 188, 117–131.CrossRefGoogle Scholar
Lin, K.-P., Long, Z.-H. & Ou, B. (2011). The size and power of bootstrap tests for spatial dependence in a linear regression model. Computational Economics 38, 153–171.CrossRefGoogle Scholar
Lindeberg, T. (1994). Scale-Space Theory in Computer Vision. Dordrecht: Kluwer.CrossRefGoogle Scholar
Little, L. R. & Dale, M. R. T. (1999) A method for analysing spatio-temporal pattern in plant establishment, tested on a Populus balsamifera clone. Journal of Ecology, 87, 620–627.CrossRefGoogle Scholar
Liu, C. (2001). A comparison of five distance-based methods for pattern analysis. Journal of Vegetation Science, 12, 411–416.CrossRefGoogle Scholar
Loh, J. M. (2008). A valid and fast spatial bootstrap for correlation functions. The Astrophysical Journal. 681, 726–734.CrossRefGoogle Scholar
Lomnicki, Z. A. & Zaremba, S. K. (1955). Some applications of zero–one processes. Journal of the Royal Statistical Society, ser. B, 17, 243–255.Google Scholar
Lomolino, M. V. (2006). Investigating causality of nestedness of insular communities: selective immigrations or extinctions?Journal of Biogeography, 23, 699–703.CrossRefGoogle Scholar
Loreau, M. (2010). From Populations to Ecosystems. Princeton: Princeton University Press.CrossRefGoogle Scholar
Lotwick, H. W. & Silverman, B. W. (1982). Methods for analysing spatial processes of several types of points. Journal of the Royal Statistical Society B, 44, 406–413.Google Scholar
Lovett Doust, J. (1981). Population dynamics and local specialization in a clonal perennial (Ranunculus repens): I. The dynamics of ramets in contrasting habitats. Journal of Ecology, 69, 743–755.CrossRefGoogle Scholar
Lowell, K. (1997). Effect(s) of the “no-same-color-touching” constraint on the join-count statistic: a simulation study. Geographical Analysis, 29, 339–353.CrossRefGoogle Scholar
Lu, H., & Carlin, B. P. (2005). Bayesian areal wombling for geographical boundary analysis. Geographical Analysis, 37, 265–285.CrossRefGoogle Scholar
Ludwig, J. A. & Cornelius, J. M. (1987). Locating discontinuities along ecological gradients. Ecology, 68, 448–450.CrossRefGoogle Scholar
Ludwig, J. A. & Goodall, D. W. (1978). A comparison of paired with blocked-quadrat variance methods for the analysis of spatial pattern. Vegetatio, 38, 49–59.CrossRefGoogle Scholar
Ludwig, J. A. & Reynolds, J. F. (1988). Statistical Ecology. New York: Wiley.Google Scholar
MacArthur, R. H. (1965). Patterns of species diversity. Biological Reviews of the Cambridge Philosophical Society, 40, 510–533.CrossRefGoogle Scholar
Mack, R. N., & Harper, J. L. (1997). Interference in dune annuals – spatial pattern and neighborhood effects. Journal of Ecology, 65, 345–363.CrossRefGoogle Scholar
MacKinnon, J. L., Petty, S. J., Elston, D. A. et al. (2001). Scale invariant spatio-temporal patterns of field vole density. Journal of Animal Ecology, 70, 101–111.CrossRefGoogle Scholar
Magurran, A. E. (2004). Measuring Biological Diversity. Oxford: Blackwell.Google Scholar
Magurran, A. E. & McGill, B. J. eds. (2010). Biological Diversity: Frontiers in Measurement and Assessment. Oxford: Oxford University Press.Google Scholar
Mahecha, M. D. & Schmidtlein, S. (2008). Revealing biogeographical patterns by nonlinear ordinations and derived anisotropic spatial filters. Global Ecology & Biogeography, 17, 284–296.CrossRefGoogle Scholar
Mahli, Y. & Román-Cuesta, R. M. (2008). Analysis of lacunarity and scales of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies. Remote Sensing of the Environment. 112, 2074–2087.Google Scholar
Mamaghani, M. J., Andersson, M. & Krieger, P. (2010). Spatial point pattern analysis of neurons using Ripley’s K-function in 3D. Frontiers in Neuroinformatics, 4, Article 9. .Google Scholar
Mandelbrot, B. B. (1983). The Fractal Geometry of Nature. New York: Freeman.Google Scholar
Manly, B. F. J. (1997). Randomization, Bootstrap, and Monte Carlo Methods in Biology, 2nd edn. London: Chapman & Hall.Google Scholar
Manly, B. F. J. (2006). Randomization, Bootstrap, and Monte Carlo Methods in Biology, 3rd edn. Boca Raton: Chapman & Hall/CRC.Google Scholar
Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. (2002). Resource Selection by Animals: Statistical Design and Analysis for Field Studies, 2nd edn. Dordrecht: Kluwer Academic.Google Scholar
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.Google Scholar
Marj, T., Tuia, D. & Ratle, F. (2006). Detection of clusters using space-time scan statistics. International Journal of Wildland Fire, 18, 830–836.Google Scholar
Marquet, P. A. (2009). Macroecological perspectives on communities and ecosystems. In The Princeton Guide to Ecology, ed. Levin, S. A., pp. 257–63. Princeton: Princeton University Press.Google Scholar
Marr, D. & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London, Series B, 207, 187–217.CrossRefGoogle ScholarPubMed
Mason, O. & Verwoerd, M. (2007). Graph theory and networks in biology. IET Systems Biology, 1, 89–119.CrossRefGoogle ScholarPubMed
Matheron, G. (1970). La théeorie des variables réegionaliséees, et ses applications. Les Cahiers du Centre de Morphologie Mathéematique de Fontainebleau. Fontainebleau: Fascicule5.Google Scholar
Matula, D. W. & Sokal, R. R. (1980). Properties of Gabriel graphs relevent to geographic variation research and the clustering of points in the plane. Geographical Analysis, 12, 205–222.CrossRefGoogle Scholar
May, R. M. (1977). Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature, 269, 471–477.CrossRefGoogle Scholar
McAbendroth, L., Foggo, A., Rundle, S. D. & Bilton, D. (2005). Unravelling nestedness and spatial pattern in pond assemblages. Journal of Animal Ecology, 74, 41–44.CrossRefGoogle Scholar
McBratney, A. B. & de Gruijter, J. J. (1992). A continuum approach to soil classification by modified fuzzy k-means with extra grades. Journal of Soils Science, 43, 159–176.CrossRefGoogle Scholar
McCoy, E. D., Bell, S. S. & Walters, K. (1986). Identifying biotic boundaries along environmental gradients. Ecology, 67, 749–759.CrossRefGoogle Scholar
McGarigal, K. & Marks, B. J. (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. US Forest Service General Technical Report PNW 351. Corvallis, OR: US Forest Service.Google Scholar
McIntire, E. J. B. & Fajardo, A. (2009). Beyond description: the active and effective way to infer processes from spatial patterns. Ecology, 90, 46–56.CrossRefGoogle ScholarPubMed
McIntire, E. J. B. & Fortin, M.-J. (2006) Structure and function of wildfire and mountain pine beetle forest boundaries. Ecography, 29, 309–318.CrossRefGoogle Scholar
McKnight, M. W., White, P. S., McDonald, R. I. et al. (2007). Putting beta-diversity on the map: broad-scale congruence and coincidence in the extremes. PLoS Biology, 5, 2424–2432.CrossRefGoogle ScholarPubMed
McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. (2008). Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89, 2712–24.CrossRefGoogle ScholarPubMed
Melián, C. J., Bascompte, J. & Jordano, P. (2005). Spatial structure and dynamics in a marine food web. In Aquatic Food Webs: An Ecosystem Approach, eds. Belgrano, A., Scharler, U., Dunne, J. & Ulanowicz, R. E., pp. 19–24. New York: Oxford University Press.CrossRefGoogle Scholar
Melles, S. J., Badzinski, D., Fortin, M.-J., Csillag, F. & Lindsay, K. (2009). Disentangling habitat and social drivers of nesting patterns in songbirds. Landscape Ecology, 24, 519–531.CrossRefGoogle Scholar
Melles, S. J., Fortin, M.-J., Lindsay, K. & Badzinski, D. (2011). Expanding northward: influence of climate change, forest connectivity, and population processes on a threatened species’ range shift. Global Change Biology, 17, 17–31.CrossRefGoogle Scholar
Meyers, L. A. (2007). Contact network epidemiology: bond percolation applied to infectious disease prediction and control. Bulletin of the American Mathematical Society, 44, 63–86.CrossRefGoogle Scholar
MielkeJr., P. W. & Berry, K. J. (2007) Permutation Methods. A Distance Function Approach, 2nd edn. New York: Springer.Google Scholar
Miller, M. P. (2005). Alleles In Space (AIS): computer software for the joint analysis of inter-individual spatial and genetic information. Journal of Heredity, 96, 722–724.CrossRefGoogle Scholar
Miller, M. P., Haig, S. M. & Wagner, R. S. (2006). Phylogeography and spatial genetic structure of the Southern torrent salamander: implications for conservation and management. Journal of Heredity, 97, 561–570.CrossRefGoogle ScholarPubMed
Millspaugh, J. J., Skalski, J. R., Kernohan, B. J. et al. (1998). Some comments on spatial independence in studies of resource selection. Wildlife Society Bulletin, 26, 232–236.Google Scholar
Milne, B. T. (1992). Spatial aggregation and neutral models in fractal landscapes. American Naturalist, 139, 32–57.CrossRefGoogle Scholar
Minasny, B. & McBratney, A. B. (2005). The Matérn function as a general model for soil variograms. Geoderma, 128, 192–207.CrossRefGoogle Scholar
Minchin, P. R. (1989). Montane vegetation of the Mt. Field Massif, Tasmania – a test of some hypotheses about properties of community patterns. Vegetatio, 83, 97–110.CrossRefGoogle Scholar
Minta, S. C. (1992). Tests of spatial and temporal interaction among animals. Ecological Applications, 2, 178–188.CrossRefGoogle ScholarPubMed
Mithen, R., Harper, J. L. & Weiner, J. (1984). Growth and mortality of individual plants as a function of “available area”. Oecologia, 62, 57–60.CrossRefGoogle ScholarPubMed
Mizon, G. E. (1995). A simple message for autocorrelation correctors: don’t. Journal of Econometrics, 69, 267–289.CrossRefGoogle Scholar
Mladenoff, D. J., & Baker, W. L. (1999). Progress and future directions in spatial modeling of forest landscapes. Chapter 13 in Advances in Spatial Modeling of Forest Landscape Change: Approaches and Applications, eds. Mladenoff, D. J. & Baker, W. L.. Cambridge: Cambridge University Press.Google Scholar
Moorcroft, P., & Lewis, M. A. (2006). Mechanistic Home Range Analysis. Princeton: Princeton University Press.Google Scholar
Moran, P. A. P. (1947). The random division of an interval. Journal of the Royal Statistical Society, Supplement, 9, 92–98.CrossRefGoogle Scholar
Moran, P. A. P. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society B, 10, 243–251.Google Scholar
Morrison, L. W. (2013). Nestedness in insular floras: spatiotemporal variation and underlying mechanisms. Journal of Plant Ecology. .CrossRef
Morsdorf, F., Meier, E., Kötz, B. et al. (2004). LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sensing of Environment, 92, 353–362.CrossRefGoogle Scholar
Moss, R., Elston, D. A. & Watson, A. (2000). Spatial asynchrony and demographic traveling waves during red grouse population cycles. Ecology, 81, 981–989.CrossRefGoogle Scholar
Mouquet, N. & Loreau, M. (2002). Coexistence in metacommunities: the regional similarity hypothesis. American Naturalist, 159, 420–426.CrossRefGoogle ScholarPubMed
Mugglestone, M. A. (1996). The role of tessellation methods in the analysis of three-dimensional spatial point patterns. Journal of Agricultural, Biological & Environmental Statistics, 1, 141–153.CrossRefGoogle Scholar
Mugglestone, M. A. & Renshaw, E. (1996). A practical guide to the spectral analysis of spatial point processes. Computational Statistics & Data Analysis, 21, 43–65.CrossRefGoogle Scholar
Munguia-Rosas, M. A. & Sosa, V. J. (2008). Nurse plants vs. nurse objects: Effects of woody plants and rocky cavities on the recruitment of the Pilosocereus leucocephalus columnar cactus. Annals of Botany, 101, 175–185.CrossRefGoogle ScholarPubMed
Murakami, M. & Hirao, T. (2010). Lizard predation alters the effect of habitat area on the species richness of insect assemblages on Bahamian isles. Diversity and Distributions, 16, 952–958.CrossRefGoogle Scholar
Murphy, M., Dezzani, R., Pilliod, D. & Storfer, A. (2010). Landscape genetics of high mountain frog metapopulations. Molecular Ecology, 19, 3634–3649.CrossRefGoogle ScholarPubMed
Nekola, J. C. & White, P. S. (1999). The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26, 867–878.CrossRefGoogle Scholar
Nestel, D. & Klein, M. (1995). Geostatistical analysis of leafhopper (Homoptera: Cicadellidae) colonization and spread of deciduous orchards. Environmental Entomology, 24, 1032–1039.CrossRefGoogle Scholar
Neu, C. W., Byers, C. R., Peek, J. M. & Boy, V. (1974). A technique for analysis of utilization-availability data. Journal of Wildlife Management, 38, 541–545.CrossRefGoogle Scholar
Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103, 8577–8582.CrossRefGoogle ScholarPubMed
Ng, K. K. S., Lee, S. L. & Koh, C. L. (2004). Spatial structure and genetic diversity of two tropical tree species with contrasting breeding systems and different ploidy levels. Molecular Ecology, 13, 657–669.CrossRefGoogle ScholarPubMed
Niklas, K. J. & Norstog, K. (1984). Aerodynamics and pollen grain depositional patterns on cycad megastrobili: implications on the reproduction of three cycad genera (Cycas, Dioon, and Zamia). Botanical Gazette, 145, 92–104.CrossRefGoogle Scholar
Nikoloski, Z., Grimbs, S., May, P. & Selbig, J. (2008). Metabolic networks are NP-hard to reconstruct. Journal of Theoretical Biology, 254, 807–816.CrossRefGoogle ScholarPubMed
Nosil, P. & Rundle, H. (2009). Ecological speciation: Natural selection and the formation of new species. In The Princeton Guide to Ecology, ed. Levin, S. A., pp. 134–142. Princeton: Princeton University Press.Google Scholar
Noy-Meir, I. & Anderson, D. (1971). Multiple pattern analysis or multiscale ordination: towards a vegetation hologram. In Statistical Ecology, vol. 3: Populations, Ecosystems, and Systems Analysis, eds. Patil, G. P., Pielou, E. C. & Waters, W. E., pp. 207–232. University Park: Pennsylvania State University Press.Google Scholar
O’Brien, D., Manseau, M., Fall, A. & Fortin, M.-J. (2006). Testing the importance of spatial configuration of winter habitat for woodland caribou: an application of graph theory. Biological Conservation, 130, 70–83.CrossRefGoogle Scholar
O’Neill, R. V., Hunsaker, C. T., Timmins, S. P. et al. (1996). Scale problems in reporting landscape pattern at the regional scale. Landscape Ecology, 11, 169–180.CrossRefGoogle Scholar
O’Neill, R. V., Krummel, J. R., Gardner, R. H. et al. (1988). Indices of landscape pattern. Landscape Ecology, 1, 153–162.CrossRefGoogle Scholar
O’Neill, R. V., Riitters, K. H., Wickham, J. D. & Jones, K. B. (1999). Landscape pattern metrics and regional assessment. Ecosystem Health, 5, 225–233.CrossRefGoogle Scholar
O’Sullivan, D. & Unwin, D. (2003). Geographic Information Analysis. New Jersey: Wiley.Google Scholar
O’Sullivan, D. & Unwin, D. (2010). Geographic Information Analysis, 2nd edn. New Jersey: Wiley.CrossRefGoogle Scholar
Oden, N. L. (1984). Assessing the significance of a spatial correlogram. Geographical Analysis, 16, 1–16.CrossRefGoogle Scholar
Oden, N. L. & Sokal, R. R. (1986). Directional autocorrelation: an extension of spatial correlograms to two dimensions. Systematic Zoology, 35, 608–617.CrossRefGoogle Scholar
Oden, N. L. & Sokal, R. R. (1992) An investigation of 3-matrix permutation tests. Journal of Classification, 9, 275–290.CrossRefGoogle Scholar
Oden, N. L., Sokal, R. R., Fortin, M.-J. & Goebl, H. (1993). Categorical wombling: detecting regions of significant change in spatially located categorical variables. Geographical Analysis, 25, 315–336.CrossRefGoogle Scholar
Ohman, M. E. (1990). The demographic effects of diel vertical migration by zooplankton. Ecological Monographs, 60, 257–282.CrossRefGoogle Scholar
Okabe, A. & Satoh, T. (2009). Spatial analysis on a network. In The SAGE Handbook on Spatial Analysis, eds. Fotheringham, A. S. & Rogers, P. A., pp. 443–464. London: SAGE.Google Scholar
Okabe, A. & Yamada, I. (2001). The K-function method on a network and its computational implementation. Geographical Analysis, 33, 270–290.Google Scholar
Okabe, A., Boots, B. & Sugihara, K. (1992). Spatial Tesselations: Concepts and Applications of Voronoi Diagrams. New York: Wiley.Google Scholar
Okabe, A., Boots, B., Sugihara, K. & Chiu, S. N. (2000). Spatial tessellations–Concepts and Applications of Voronoi Diagrams, 2nd edn. Chichester: Wiley.CrossRefGoogle Scholar
Okabe, A., Okunuki, K.-I. & Shiode, S. (2006). SANET: A toolbox for spatial analysis on a network. Geographical Analysis, 38, 57–66.CrossRefGoogle Scholar
Olson, J. S. (1958). Lake Michigan dune development. 2. Plants as agents and tools in geomorphology. Journal of Geology, 66, 345–351.CrossRefGoogle Scholar
OMNR (Ontario Ministry of Natural Resources) (1998). Ontario Provincial Landcover Database. Peterborough: Ontario Ministry of Natural Resources.Google Scholar
Opdam, P. & Wascher, D. (2004). Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biological Conservation, 117, 285–297.CrossRefGoogle Scholar
Openshaw, S. (1984). The Modifiable Areal Unit Problem. Norwich: Geo Books.Google Scholar
Openshaw, S. (1987) An automated geographical analysis system. Environment and Planning A, 19, 431–436.CrossRefGoogle Scholar
Osborne, P. E. & Suarez-Seoane, S. (2002). Should data be partitioned spatially before building large-scale distribution models?Ecological Modelling, 157, 249–259.CrossRefGoogle Scholar
Osborne, P. E., Giles, M., Foody, G. M. & Suárez-Seoane, S. (2007). Non-stationarity and local approaches to modelling the distributions of wildlife. Diversity and Distributions, 13, 313–323.CrossRefGoogle Scholar
Ostendorf, B. & Reynolds, J. F. (1998). A model of arctic tundra vegetation derived from topographic gradients. Landscape Ecology, 13, 187–201.CrossRefGoogle Scholar
Otis, D. L. (1997). Analysis of habitat selection studies with multiple patches within cover types. Journal of Wildlife Management, 61, 1016–1022.CrossRefGoogle Scholar
Otis, D. L. & White, G.C. (1999). Autocorrelation of location estimates and the analysis of radiotracking data. Journal of Wildlife Management, 63, 1039–1044.CrossRefGoogle Scholar
Pacala, S. W. (1997). Dynamics of plant communities. In Plant Ecology, 2nd edn, ed. Crawley, M. C., pp. 532–555. Blackwell Scientific, UK.Google Scholar
Pagel, J. & Schurr, F. M. (2012). Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Global Ecology and Biogeography, 21, 293–304.CrossRefGoogle Scholar
Pakeman, R. J. & Small, J. L. (2005). The role of the seed bank, seed rain and the timing of disturbance in gap regeneration. Journal of Vegetation Science, 16, 121–130.CrossRefGoogle Scholar
Paley, C. J., Taraskin, S. & Elliott, S. (2007) Temporal and dimensional effects in evolutionary graph theory. Physical Review Letters, 98, 098103.CrossRefGoogle ScholarPubMed
Palmer, M. W. (1992). The coexistence of species in fractal landscapes. American Naturalist, 139, 375–397.CrossRefGoogle Scholar
Palmer, M. W. (1993). Putting things in even better order: the advantages of canonical correspondence analysis. Ecology, 74, 2215–2230.CrossRefGoogle Scholar
Parrott, L., Proulx, R. & Thibert-Plante, X. (2008). Three-dimensional metrics for the analysis of spatiotemporal data in ecology. Ecological Informatics, 3, 343–353.CrossRefGoogle Scholar
Pascual, M. & Dunne, J. A. eds. (2006). Ecological Networks: Linking Structure to Dynamics in Food Webs. New York: Oxford University Press.Google Scholar
Patil, G. P. & Taillie, C. (2004). Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environmental and Ecological Statistics, 11, 183–197.CrossRefGoogle Scholar
Patterson, B. D. & Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas and archipelagoes. Biological Journal of the Linnean Society, 28, 65–82.CrossRefGoogle Scholar
Pausas, J. G., Bonet, A., Maestre, F. T. & Climent, A. (2006). The role of the perch effect on the nucleation process in Mediterranean semi-arid oldfields. Acta Oecologia, 29, 346–352.CrossRefGoogle Scholar
Peet, R. K. (1974). The measurement of species diversity. Annual Review of Ecology and Systematics, 5, 285–307.CrossRefGoogle Scholar
Pelletier, B., Fyles, J. W. & Dutilleul, P. (1999). Tree species control and spatial structure of forest floor properties in a mixed-species stand. Écoscience, 6, 79–91.CrossRefGoogle Scholar
Penny, D., Foulds, L. R. & Hendy, M. D. (1982). Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences. Nature, 297, 197–200.CrossRefGoogle ScholarPubMed
Penrose, M. (2003). Random Geometric Graphs. Oxford: Oxford University Press.CrossRefGoogle Scholar
Penttinen, A. K., Stoyan, D. & Henttonen, H. M. (1992). Marked point processes in forest statistics. Forest Science, 38, 806–824.Google Scholar
Peralta, P. & Mather, P. (2000). An analysis of deforestation patterns in the extractive reserves of Acre, Amazonia, from satellite imagery: a landscape ecological approach. International Journal of Remote Sensing, 21, 2555–2570.CrossRefGoogle Scholar
Peres-Neto, P. R. (2006). A unified strategy for estimating and controlling spatial, temporal and phylogenetic autocorrelation in ecological models. Oecologia Brasiliensis, 10, 105–119.CrossRefGoogle Scholar
Peres-Neto, P. R. & Legendre, P. (2010). Estimating and controlling for spatial structure in the study of ecological communities. Global Ecology and Biogeography, 19, 174–184.CrossRefGoogle Scholar
Perez, S. I., Diniz-Filho, J. A. F., Bernal, V. & Gonzalez, P. N. (2010). Spatial regression techniques for inter-population data: studying the relationships between morphological and environmental variation. Journal of Evolutionary Biology, 2, 237–248.CrossRefGoogle Scholar
Perry, J. N. (1994). Chaotic dynamics can generate Taylor’s power-law. Proceedings of the Royal Society of London Series B, Biological Sciences, 257, 221–226.CrossRefGoogle Scholar
Perry, J. N. (1995). Spatial analysis of distance indices. Journal of Animal Ecology, 64, 303–314.CrossRefGoogle Scholar
Perry, J. N. (1996). Simulating spatial patterns of counts in agriculture and ecology. Computers and Electronics in Agriculture, 15, 93–109.CrossRefGoogle Scholar
Perry, J. N. (1999). Red–blue plots for detecting clusters in count data. Ecology Letters, 2, 106–113.CrossRefGoogle Scholar
Perry, J. N., Smith, R. H., Woiwod, I. P. & Morse, D.R. (eds.) (2000). Chaos in Real Data: The Analysis of Non-Linear Dynamics from Short Ecological Time Series, 225pp. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
Perry, J. N., Woiwod, I. P. & Hanski, I. (1993). Using response-surface methodology to detect chaos in ecological time series. Oikos, 68, 329–339.CrossRefGoogle Scholar
Peters, V. S. (2003). Keystone processes affect succession in boreal mixed woods: the relationship between masting in white spruce and fire history. Ph.D. Thesis, University of Alberta.
Peterson, E. E., Ver Hoef, J. M., Isaak, D. J. et al. (2013). Modeling dendritic ecological networks in space: an integrated network perspective. Ecology Letters, 16, 707–719.CrossRefGoogle Scholar
Peterson, G. D. (2002). Contagious disturbance, ecological memory, and the emergence of landscape pattern. Ecosystems, 5, 329–338.CrossRefGoogle Scholar
Petrovskii, S. V. & Malchow, H. (2001). Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theoretical Population Biology, 59, 157–174.CrossRefGoogle ScholarPubMed
Pfeifer, P. E. & Deutsch, S. J. (1980). Identification and interpretation of first order space-time ARMA models. Technometrics, 22, 397–408.CrossRefGoogle Scholar
Philibert, M. D., Fortin, M.-J. & Csillag, F. (2008). Spatial structure effects on the detection of patches boundaries using local operators. Environmental and Ecological Statistics, 15, 447–467.CrossRefGoogle Scholar
Pielou, D. P. & Pielou, E. C. (1968). The associations of species of infrequent occurrence: the insect and spider fauna of Polyporus betulinus (Bulliard) Fires. Journal of Theoretical Biology, 21, 202–216.CrossRefGoogle Scholar
Pielou, E. C. (1959). The use of point-to-plant distances in the study of the pattern of plant populations. Journal of Ecology, 47, 607–613.CrossRefGoogle Scholar
Pielou, E. C. (1975a). Ecological models on an environmental gradient. In Applied Statistics, ed. Gupta, R. P., pp. 261–269. Holland: North-Holland Publishing Company.Google Scholar
Pielou, E. C. (1975b). Ecological Diversity. New York: John Wiley.Google Scholar
Pielou, E. C. (1977a). The latitudinal spans of seaweed species and their patterns of overlap. Journal of Biogeography, 4, 299–311.CrossRefGoogle Scholar
Pielou, E. C. (1977b). Mathematical Ecology. New York: Wiley.Google Scholar
Pielou, E. C. (1978). Latitudinal overlap of seaweed species: evidence for quasi-sympatric speciation. Journal of Biogeography, 5, 227–238.CrossRefGoogle Scholar
Pielou, E. C. (1979). Quick method of determining the diversity of foraminiferal assemblages. Journal of Paleontology, 53, 1237–1242.Google Scholar
Pinhiero, J. C. & Bates, D.M. (2000) Mixed-effects Models in S and S-Plus. New York: Springer.CrossRefGoogle Scholar
Pinto, N. & Keitt, T. H. (2009). Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecology, 24, 253–266.CrossRefGoogle Scholar
Pitas, I. (2000). Digital Image Processing Algorithms and Applications. New York: Wiley-Interscience.Google Scholar
Plante, M., Lowell, L., Potvin, F., Boots, B. & Fortin, M.-J. (2004). Studying deer habitat on Anticosti Island, Québec: relating animal occurrences and forest map information. Ecological Modelling, 174, 387–399.CrossRefGoogle Scholar
Plant, R. E. (2012). Spatial Data Analysis in Ecology and Agriculture using R. Boca Raton: CRC Press. Taylor & Francis Group.CrossRefGoogle Scholar
Plotkin, J. B., Potts, M. D., Leslie, N. et al. (2000). Species-area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology, 207, 81–99.CrossRefGoogle ScholarPubMed
Plotnick, R. E., Gardner, R. H., Hargrove, W. W., Pretegaard, K. & Perlmutter, M. (1996). Lacunarity analysis: a general technique for the analysis of spatial patterns. Physical Review E, 53, 5461–5468.CrossRefGoogle ScholarPubMed
Polakowska, A. E., Fortin, M.-J. & Couturier, A. (2012). Quantifying the spatial relationship between bird species’ distributions and landscape feature boundaries in southern Ontario, Canada. Landscape Ecology, 27, 1481–1493.CrossRefGoogle Scholar
Pollard, J. H. (1971). On distance estimators of density in randomly distributed forests. Biometrics, 27, 991–1002.CrossRefGoogle Scholar
Porteus, B. T. (1987). The mutual independence hypothesis for categorical data in complex sampling schemes. Biometrika, 74, 857–862.Google Scholar
Poulin, R. & Guegan, J. F. (2000). Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species coexistence. International Journal for Parasitology, 30, 1147–1152.CrossRefGoogle ScholarPubMed
Proulx, S. R., Promislow, D. E. L. & Phillip, P.C. (2005). Network thinking in ecology and evolution. Trends in Ecology and Evolution, 20, 345–352.CrossRefGoogle ScholarPubMed
Qi, Y. & Wu, J. (1996). Effects of changing scale on the results of landscape pattern analysis using spatial autocorrelation indices. Landscape Ecology, 11, 39–50.CrossRefGoogle Scholar
Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224–239.CrossRefGoogle Scholar
Rangel, T. F., Diniz, J. A. F. & Bini, L.M. (2010). SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography, 33, 46–50.CrossRefGoogle Scholar
Ranta, E., Kaitala, V., Lindström, J. & Helle, E. (1997). The Moran effect and synchrony in population dynamics. Oikos, 78, 136–142.CrossRefGoogle Scholar
Rao, C. R. (1964). The use and interpretation of principal component analysis in applied research. Sankhyaá, Ser., A26, 329–358.Google Scholar
Rayfield, B., Fortin, M.-J. & Fall, A. (2010). The sensitivity of least-cost habitat graphs to relative cost surface values. Landscape Ecology, 25, 519–532.CrossRefGoogle Scholar
Rayfield, B., Fortin, M.-J. & Fall, A. (2011). Connectivity for conservation: a framework to classify habitat network statistics. Ecology, 92, 847–858.CrossRefGoogle Scholar
Read, S., Bath, P., Willett, P. & Maheswaran, R. (2011). Measuring the spatial accuracy of the spatial scan statistic. Spatial and Spatio-temporal Epidemiology, 2, 69–78.CrossRefGoogle ScholarPubMed
Redding, T. E., Hope, G. D., Fortin, M.-J., Schmidt, M. G. & Bailey, W.G. (2003). Spatial patterns of soil temperature and moisture across subalpine forest-clearcut edges in the southern interior of British Columbia. Canadian Journal of Soil Science, 83, 121–130.CrossRefGoogle Scholar
Reich, R. M., Metzger, K. L. & Bonham, C.D. (1997). Application of permutation procedures for comparing multi-species point patterns of grassland plants. Grassland Science, 43, 189–195.Google Scholar
Remmel, T. K. & Csillag, F. (2003). When are two landscape pattern indices significantly different?Journal of Geographical Systems, 5, 331–351.CrossRefGoogle Scholar
Remmel, T. K. & Fortin, M.-J. (2013). Categorical, class-focused map patterns: Characterization and comparison. Landscape Ecology, 28, 1587–1599.CrossRefGoogle Scholar
Remmert, H. (1991). The Mosaic-cycle Concept of Ecosystems. Berlin: Spring-Verlag.CrossRefGoogle Scholar
Renshaw, E. & Ford, E. D. (1984). The description of spatial pattern using two-dimensional spectral analysis. Vegetatio, 56, 75–85.Google Scholar
Richardson, M. C., Fortin, M.-J. & Branfireun, B.A. (2009). Hydrogeomorphic edge detection and delineation of landscape functional units from LiDAR digital elevation models. Water Resources Research, 45, W10441, .CrossRefGoogle Scholar
Ricotta, C. (2005). Additive partitioning of Rao’s quadratic diversity: a hierarchical approach. Ecological Modelling, 183, 365–371.CrossRefGoogle Scholar
Ricotta, C. (2006). Towards a complex, plural and dynamic approach to diversity: rejoinder to Myers and Patil, Podani, and Sarkar. Acta Biotheoretica, 54, 141–146.CrossRefGoogle Scholar
Ricotta, C. & Anand, M. (2006). Spatial complexity of ecological communities: Bridging the gap between probabilistic and non-probabilistic uncertainty measures. Ecological Modelling, 197, 59–66.CrossRefGoogle Scholar
Ricotta, C. & Marignani, M. (2007). Computing beta-diversity with Rao’s quadratic entropy: a change of perspective. Diversity and Distributions, 13, 237–241.CrossRefGoogle Scholar
Rietkerk, M., Dekker, S. C., Wassen, M. J., Verkroost, A. W. M. & Bierkens, M.F.P. (2004). A putative mechanism for bog patterning. The American Naturalist, 163, 700–708.CrossRefGoogle ScholarPubMed
Riitters, K. H., & Coulston, J. W. (2005). Hot spots of perforated forest in the eastern United States. Environmental Management, 35, 483–492.CrossRefGoogle ScholarPubMed
Ripley, B. D. (1976). The second-order analysis of stationary point processes. Journal of Applied Probability, 13, 255–266.CrossRefGoogle Scholar
Ripley, B. D. (1978). Spectral analysis and the analysis of pattern in plant communities. Journal of Ecology, 66, 965–981.CrossRefGoogle Scholar
Ripley, B. D. (1981). Spatial Processes. New York: Wiley.Google Scholar
Ripley, B. D. (1988). Statistical Inference for Spatial Processes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Robertson, C., Nelson, T. A., Boots, B. & Wulder, M.A. (2007). STAMP: Spatial-temporal analysis of moving polygons. Journal of Geographical Systems, 9, 207–227.CrossRefGoogle Scholar
Rooney, S. M., Wolfe, A. & Hayden, T.J. (1998). Autocorrelated data in telemetry studies: time to independence and the problem of behavioural effects. Mammal Review, 29, 89–98.CrossRefGoogle Scholar
Rosenberg, M. S. & Anderson, C. D. (2011). PASSaGE: Pattern Analysis, Spatial Statistics and Geographic Exegesis. Version 2. Methods in Ecology and Evolution, 2, 229–232.CrossRefGoogle Scholar
Rosenzweig, M. L. (1995). Species Diversity in Space and Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Rossi, R. E., Mulla, D. J., Journel, A. J. & Franz, E.H. (1992). Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs, 62, 277–314.CrossRefGoogle Scholar
Rousset, F. (1996). Equilibrium values of measures of population subdivision for stepwise mutation processes. Genetics, 142, 1357–1362.Google ScholarPubMed
Rozenfeld, A. F., Arnaud-Haond, S., Hernández-García, E. et al. (2008). Network analysis identifies weak and strong links in a metapopulation system. Proceedings of the National Academy of Sciences, 105, 18 824–18 829.CrossRefGoogle Scholar
Ruxton, G. D. (1993). Linked populations can still be chaotic. Oikos, 68, 347–348.CrossRefGoogle Scholar
Sadahiro, Y. & Umemura, M. (2002). A computational approach for the analysis of changes in polygon distributions. Journal of Geographical Systems, 3, 137–154.CrossRefGoogle Scholar
Salvatori, V., Skidmore, A. K., Corsi, F. & Van der Meer, F. (1999). Estimating tenporal independence of radio-telemetry data on animal activity. Journal of Theoretical Biology, 198, 567–574.CrossRefGoogle ScholarPubMed
Sanuy, D. & Bovet, P. (1997). A comparative study on the paths of five anura species. Behavioural Processes, 41, 193–199.CrossRefGoogle ScholarPubMed
Sarkar, A. (2009). An Introduction to Biodiversity Informatics. New York: World Scientific Publishing.Google Scholar
Saunders, S. C., Brosofske, K. D., Chen, J., Drummer, T. D. & Gustafson, E. J. (2005). Identifying scales of pattern in ecological data: a comparison of lacunarity, spectral and wavelet analyses. Ecological Complexity, 2, 87–105.CrossRefGoogle Scholar
Schabenberger, O. & Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis. London: Chapman and Hall.Google Scholar
Scheiner, S. M., Cox, S. B., Willig, M. et al. (2000). Species richness, species-area curves and Simpson’s paradox. Evolutionary Ecology Research, 2, 791–802.Google Scholar
Schladitz, K. & Baddeley, A. J. (2000). A third order point process characteristic. Scandinavian Journal of Statistics, 27, 657–671.CrossRefGoogle Scholar
Schroeder, B. & Seppelt, R. (2006). Analysis of pattern-process interactions based on landscape models–Overview, general concepts, and methodological issues. Ecological Modelling, 199, 505–516.CrossRefGoogle Scholar
Schroeder, M. (1991). Fractals, Chaos, Power Laws. New York: Freeman.Google Scholar
Schultz, C. B. & Crone, E.E. (2001). Edge-mediated dispersal behavior in a prairie butterfly. Ecology, 82, 1879–1892.CrossRefGoogle Scholar
Schulz, J. P. (1960). Ecological Studies on Rain Forest in Northern Surinam. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde.
Scrosati, R. & Heaven, C. (2007). Spatial trends in community richness, diversity and evenness across rocky intertidal environmental stress gradients in eastern Canada. Marine Ecoogy Progress Series, 342, 1–14.CrossRefGoogle Scholar
Selmi, S. & Boulinier, T. (2001). Ecological biogeography of Southern Ocean islands: the importance of considering spatial issues. American Naturalist, 158, 426–437.CrossRefGoogle ScholarPubMed
Setzer, R. W. (1985). Spatio-temporal patterns of mortality in Pemphigus populicaulis and P. populitransversus on cottonwoods. Oecologia, 67, 310–321.CrossRefGoogle ScholarPubMed
Sherratt, J. A. (2001). Periodic travelling waves in cyclic predator–prey systems. Ecology Letters, 4, 30–37.CrossRefGoogle Scholar
Sherratt, T. N., Lambin, X., Petty, S. J. et al. (2000). Use of coupled oscillator models to understand synchrony and traveling waves in populations of the field vole Microtus agrestis in northern England. Journal of Applied Ecology, 37, 148–158.CrossRefGoogle Scholar
Shih, F. Y. (2009). Image Processing and Mathematical Morphology: Fundamentals and Applications. Boca Raton: CRC Press.CrossRefGoogle Scholar
Shimatani, K. (2001). Multivariate point processes and spatial variation of species diversity. Forest Ecology and Management, 142, 215–229.CrossRefGoogle Scholar
Shimatani, K. & Kubota, Y. (2004). Spatial analysis for continuously changing point patterns along a gradient and its application to an Abies sachalinensis population. Ecological Modelling, 180, 359–369.CrossRefGoogle Scholar
Shipley, B. & Keddy, P. R. (1987). The individualistic and community-unit concepts as falsifiable hypotheses. Vegetatio, 69, 47–55.CrossRefGoogle Scholar
Silvertown, J., Dodd, M., Gowing, D., Lawson, C. & McConaway, K. (2006). Phylogeny and the hierarchical organization of plant diversity. Ecology, 87, S39–S49.CrossRefGoogle ScholarPubMed
Simard, Y., Marcotte, D. & Naraghi, K. (2003). Three-dimensional acoustic mapping and simulation of krill distribution in the Saguenay–St. Lawrence Marine Park whale feeding ground. Aquatic Living Resources, 16, 137–144.CrossRefGoogle Scholar
Simberloff, D. (1979). Nearest neighbor assessments of spatial configurations of circles rather than points. Ecology, 60, 679–685.CrossRefGoogle Scholar
Simberloff, D. & Martin, J. L. (1991). Nestedness of insular avifaunas-Simple summary statistics masking complex species patterns. Ornis Fennica, 68, 178–192.Google Scholar
Smith, R. L. & Robinson, P. J. (1995). A Bayesian approach to modelling spatial-temporal precipitation data. Proceedings of the Sixth International Meeting on Statistical Climatology, Galway, Ireland.Google Scholar
Smouse, P. E., Long, J. C. & Sokal, R.R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology, 35, 627–632.CrossRefGoogle Scholar
Soininen, J., McDonald, R., & Hillibrand, H. (2007). The distance decay of similarity in ecological communities. Ecography 30, 3–12.CrossRefGoogle Scholar
Sokal, R. R. & Oden, N.L. (1978). Spatial autocorrelation in biology. 1. Methodology. Biological Journal of the Linnean Society, 10, 199–228.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, F.J. (1981). Biometry, 2nd edn. San Francisco: Freeman.Google Scholar
Sokal, R. R. & Rohlf, F.J. (1995). Biometry, 3rd edn. San Francisco: Freeman.Google Scholar
Sokal, R. R. & Wartenberg, D.E. (1983). A test of spatial autocorrelation using an isolation-by-distance model. Genetics, 105, 219–237.Google ScholarPubMed
Sokal, R. R., Oden, N. L. & Thomson, B.A. (1988). Genetic changes across language boundaries in Europe. American Journal of Physical Anthropology, 76, 337–361.CrossRefGoogle Scholar
Sokal, R. R., Oden, N. L. & Thomson, B.A. (1998). Local spatial autocorrelation in biological variables. Biological Journal of the Linnean Society, 65, 41–62.CrossRefGoogle Scholar
Sokal, R. R., Oden, N. L., Thomson, B. A. & Kim, J. (1993). Testing for regional differences in means: distinguishing inherent from spurious spatial autocorrelation by restricted randomization. Geographical Analysis, 25, 199–210.CrossRefGoogle Scholar
Solé, R. (2007). Scaling laws in the drier. Nature, 449, 151–153.CrossRefGoogle ScholarPubMed
Solé, R. & Bascompte, J. (2006). Self-Organization in Complex Ecosystems. Princeton: Princeton University Press.Google Scholar
Solé, R. V. & Bascompte, J. (1995). Measuring chaos from spatial information. Journal of Theoretical Biology, 175, 139–147.CrossRefGoogle Scholar
Solow, A. R. (1989). Bootstrapping sparsely sampled spatial point patterns. Ecology, 70, 379–382.CrossRefGoogle Scholar
Spear, S.Balkenhol, N., Fortin, M.-J., McRae, B. & Scribner, K. (2010). Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Molecular Ecology, 19, 3576–3591.CrossRefGoogle ScholarPubMed
Spooner, P. G., Lunt, I. D., Okabe, A. & Shiode, S. (2004). Spatial analysis of roadside Acacia populations on a road network using the network K-function. Landscape Ecology, 19, 491–499.CrossRefGoogle Scholar
Sprugel, D. G. (1976). Dynamic structure of wave-regenerated Abies balsamea forests in the northeastern United States. Journal of Ecology, 64, 889–911.CrossRefGoogle Scholar
Louis, V., Fortin, M.-J. & Desrochers, A. (2004). Association between microhabitat and territory boundaries of two forest songbirds. Landscape Ecology, 19, 591–601.CrossRefGoogle Scholar
Stohlgren, T. J. (2007). Measuring Plant Diversity: Lessons from the Field. New York: Oxford University Press.Google Scholar
Stone, L. & Ezrati, S. (1996). Chaos, cycles and spatiotemporal dynamics in plant ecology. Journal of Ecology, 84, 279–291.CrossRefGoogle Scholar
Stoyan, D. & Penttinen, A. (2000). Recent applications of point process methods in forestry statistics. Statistical Science, 15, 61–78.Google Scholar
Stoyan, D., Kendall, W. S., & Mecke, J. (1995). Stochastic Geometry and its Applications, 2nd edn. Chichester: Wiley.Google Scholar
Strogatz, S. H. (2001). Exploring complex networks. Nature, 410, 268–276.CrossRefGoogle ScholarPubMed
Sutcliffe, O. L., Thomas, C. D. & Moss, D. (1996). Spatial synchrony and asynchrony in butterfly population dynamics. Journal of Animal Ecology, 65, 85–95.CrossRefGoogle Scholar
Suzuki, S. N., Kachi, N. & Suzuki, J.-I. (2008). Development of local size hierarchy causes regular spacing of trees in an even-aged Abies forest: analyses using spatial autocorrelation and the mark correlation function. Annals of Botany, 102, 435–441.CrossRefGoogle Scholar
Swihart, R. K. & Slade, N.A. (1985). Testing for independence of observations in animal movements. Ecology, 66, 1176–1184.CrossRefGoogle Scholar
Swihart, R. K. & Slade, N.A. (1986). The importance of statistical power when testing for independence in animal movements. Ecology, 67, 255–258.CrossRefGoogle Scholar
Takahashi, K., Kulldorff, M., Tango, T. & Yih, K (2008). A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring. International Journal of Health Geographics 7:14. .CrossRefGoogle Scholar
Tang, J.Musolesi, M., Mascolo, C. & Latora, V. (2009). Temporal Distance Metrics for Social Network Analysis. Proceedings of the 2nd ACM SIGCOMM workshop on Online Social Networks. WOSN’09. .CrossRef
Tango, T. (2010). Statistical Methods for Disease Clustering. New York: Springer.CrossRefGoogle Scholar
Tavaré, S. (1983). Serial dependence in contingency tables. Journal of the Royal Statistical Society B, 45, 100–106.Google Scholar
Tavaré, S. & Altham, P. M. E. (1983). Serial dependence of observations leading to contingency tables, and corrections to chi-squared statistics. Biometrika, 70, 139–144.CrossRefGoogle Scholar
Taylor, P. D., Day, T. & Wild, G. (2007). Evolution of cooperation in a finite homogeneous graph. Nature, 447, 469–742.CrossRefGoogle Scholar
ter Braak, C. J. F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.CrossRefGoogle Scholar
Thiery, J. M., Dherbes, J. M., & Valentin, C. (1995). A model simulationg the genesis of banded vegetation patterns in Niger. Journal of Ecology, 83, 497–507.CrossRefGoogle Scholar
Thomas, D. L. & Taylor, E.J. (1990). Study designs and tests for comparing resource use and availability. Journal of Wildlife Management, 54, 322–330.CrossRefGoogle Scholar
Tischendorf, L. (2001). Can landscape indices predict ecological processes consistently?Landscape Ecology, 16, 235–54.CrossRefGoogle Scholar
Tobin, P. C. & Bjørnstad, O. N. (2003). Spatial dynamics and cross-correlation in a transient predator–prey system. Journal of Animal Ecology, 72, 460–467.CrossRefGoogle Scholar
Tobler, W. F. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240.CrossRefGoogle Scholar
Todd, K. W., Csillag, F. & Atkinson, P.M. (2003). Three-dimensional mapping of light transmittance and foliage distribution using lidar. Canadian Journal of Remote Sensing, 29, 544–555.CrossRefGoogle Scholar
Torrence, C. & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61–78.2.0.CO;2>CrossRefGoogle Scholar
Toussaint, G. T. (1980). The relative neighbourhood graph of a finite planar set. Pattern Recognition, 12, 261–268.CrossRefGoogle Scholar
Tuia, D., Ratle, F., Lasaponara, R., Tleesca, L & Kanevski, M. (2008). Scan statistics analysis of forest fire clusters. Communications in Nonlinear Science and Numerical Simulation, 13, 1689–1694.CrossRefGoogle Scholar
Tuomisto, H. (2010a). A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33, 2–22.CrossRefGoogle Scholar
Tuomisto, H. (2010b). A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography, 33, 23–45.CrossRefGoogle Scholar
Tuomisto, H. & Ruokolainen, K. (2006). Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology, 87, 2697–2708.CrossRefGoogle ScholarPubMed
Turchin, P. (1996). Fractal analyses of animal movement: a critique. Ecology, 77, 2086–2090.CrossRefGoogle Scholar
Turchin, P. (1998). Quantitative Analysis of Movement. Sunderland: Sinauer.Google Scholar
Turchin, P. & Taylor, A. D. (1992). Complex dynamics in ecological time series. Ecology, 73, 289–305.CrossRefGoogle Scholar
Turner, M. G., Gardner, R. H. & O’Neill, R. V. (2003). Landscape Ecology in Theory and Practice: Pattern and Process. New York: Springer-Verlag.Google Scholar
Ulam, S. (1962). Patterns of growth of figures: mathematical aspects. In: Proceedings of Symposia in Applied Mathematics, XIV: Mathematical Problems in the Biological Sciences. American Mathematical Society, 61–65.Google Scholar
Ulrich, W., Almeida-Neto, M. & Gotelli, N.J. (2008). A consumer’s guide to nestedness. Oikos 118, 3–17.CrossRefGoogle Scholar
Underwood, A. J. (1978a). The detection of nonrandom patterns of distribution of species along a gradient. Oecologia (Berl.), 36, 317–326.CrossRefGoogle Scholar
Underwood, A. J. (1978b). A refutation of critical tide levels as determinants of the structure of the intertidal communities on British shores. Oecologia (Berl.), 37, 261–276.Google Scholar
Upton, G. J. G. & Fingleton, B. (1985). Spatial Data Analysis by Example, vol. I: Point Pattern and Quantitative Data. New York: Wiley.Google Scholar
Upton, G. J. G. & Fingleton, B. (1989). Spatial Data Analysis by Example, vol. II: Categorical and Directional Data. New York: Wiley.Google Scholar
Urban, D. L. & Keitt, T. (2001). Landscape connectivity: a graph-theoretic perspective. Ecology, 82, 1205–1218.CrossRefGoogle Scholar
Urban, D. L., Minor, E. S., Treml, E. A. & Schick, R.S. (2009). Graph models of habitat mosaics. Ecology Letters, 12, 260–273.CrossRefGoogle ScholarPubMed
Vaček, S. & Lepš, J. (1996). Spatial dynamics of forest decline: the role of neighbouring trees. Journal of Vegetation Science, 7, 789–798.CrossRefGoogle Scholar
Valcu, M. & Kempenaers, B. (2010). Is spatial autocorrelation an intrinsic property of territory size?Oecologia, 162, 609–615.CrossRefGoogle ScholarPubMed
van Es, H. M. & van Es, C. L. (1993). The spatial nature of randomization and its effects on the outcome of field experiments. Agronomy Journal, 85, 420–428.CrossRefGoogle Scholar
van Langevelde, F., van der Knaap, W. G. M. & Claassen, G.D.H. (1998). Comparing connectivity in landscape networks. Environmental Planning B: Planning and Design, 25, 849–863. Not seen, author?CrossRefGoogle Scholar
van Lieshout, M. N. M. & Baddeley, A.J. (1999). Indices of dependence between types in multivariate point patterns. Scandinavian Journal of Statistics, 26, 511–532.CrossRefGoogle Scholar
Van Strien, M. J., Keller, D. & Holderegger, R. (2012). A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Molecular Ecology, 21, 4010–4023.CrossRefGoogle ScholarPubMed
Vekemans, X. & Hardy, O. J. (2004). New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology, 13, 921–935.CrossRefGoogle ScholarPubMed
Velland, M. (2001). Do commonly used indices of β-diversity measure species turnover?Journal of Vegetation Science, 12, 545–552.CrossRefGoogle Scholar
Venables, W. N. & Ripley, B.D. (2002). Modern Applied Statistics with S, 4th edn. New York: Springer-Verlag.CrossRefGoogle Scholar
Vepakomma, U. & Fortin, M.-J. (2010). Scale-specific effects of disturbance and environment on vegetation patterns of a boreal landscape. Proceedings of SilviLaser 2010.
Vepakomma, U., Kneeshaw, D. & Fortin, M.-J. (2012). Spatial contiguity and continuity of disturbance in boreal forests: gap persistence, expansion, shrinkage and displacement. Journal of Ecology, 100, 1257–1268.CrossRefGoogle Scholar
Ver Hoef, J. M. & Glenn-Lewin, D. C. (1989). Multiscale ordination: a method for detecting pattern at several scales. Vegetatio, 82, 59–67.Google Scholar
Ver Hoef, J. M., Peterson, E. E. & Theobald, D. (2006). Spatial statistical models that use flow and stream distance. Environmental and Ecological Statistics, 13, 449–464.CrossRefGoogle Scholar
Viljugrein, H., Lingjærde, O. C., Stenseth, N. C. & Boyce, M.S. (2001). Spatio-temporal patterns of mink and muskrat in Canada during a quarter century. Journal of Animal Ecology, 70, 671–682.CrossRefGoogle Scholar
Volford, A., Izsák, F., Ripszám, M. & Lagzi, I. (2007). Pattern formation and self-organization in a simple precipitation system. Langmuir, 23, 961–994.CrossRefGoogle Scholar
Wackernagel, H. (2010). Multivariate Geostatistics, 3rd edn. New York: Springer, 403 pages.Google Scholar
Wagner, H. H. (2003). Spatial covariance in plant communities: integrating ordination, geostatistics, and variance testing. Ecology, 84, 1045–1057.CrossRefGoogle Scholar
Wagner, H. H. (2004). Direct multi-scale ordination with canonical correspondence analysis. Ecology, 85, 342–351.CrossRefGoogle Scholar
Wagner, H. H. & Fortin, M.-J. (2005). Spatial analysis of landscapes: concepts and statistics. Ecology, 86, 1975–1987.CrossRefGoogle Scholar
Wagner, H. H., Holderegger, R., Werth, S. et al. (2005). Variogram analysis of the spatial genetic structure of continuous populations using multilocus microsatellite data. Genetics, 169, 1739–1752.CrossRefGoogle ScholarPubMed
Wakefield, J. C., Kelsall, J. E. & Morris, S.E. (2000). Clustering, cluster detection, and spatial variation in risk. In Spatial Epidemiology: Methods and Applications, eds. Elliott, P., Wakefield, J. C., Best, N. G. & Briggs, D. J., pp. 128–152. Oxford: Oxford University Press.Google Scholar
Wallerman, J., Joyce, S., Vencatasawmy, C. P. & Olsson, H. (2002). Prediction of forest stem volume using kriging adapted to detected edges. Canadian Journal of Forest Research, 32, 509–518.CrossRefGoogle Scholar
Wang, Y.-H., Yang, K.-C., Bridgman, C. L. & Lin, L.-K. (2008). Habitat suitability modeling to correlate gene flow with landscape connectivity. Landscape Ecology, 23, 989–1000.Google Scholar
Wartenberg, D. (1985). Multivariate spatial autocorrelation: a method for explanatory geographical analysis. Geographical Analysis, 17, 263–283.CrossRefGoogle Scholar
Wasserman, L. (2004). All of Statistics. New York: Springer.CrossRefGoogle Scholar
Watt, A. S. (1947). Pattern and process in the plant community. Journal of Ecology, 35, 1–22.CrossRefGoogle Scholar
Watts, D. J. (1999). Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton: Princeton University Press.Google Scholar
Watts, D. J. & Strongtz, S.H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393 (6684), 440–442.CrossRefGoogle ScholarPubMed
Weber, K. T., Burcham, M. & Marcum, C.L. (2001). Assessing independence of animal locations with association matrices. Journal of Rangeland Management, 54, 21–24.CrossRefGoogle Scholar
Webster, R. (1973). Automatic soil-boundary location from transect data. Mathematical Geology, 5, 27–37.CrossRefGoogle Scholar
Webster, R. & Oliver, M. A. (2001). Geostatistics for Environmental Scientists. Chichester: Wiley.Google Scholar
Webster, R. & Oliver, M. A. (2007). Geostatistics for Environmental Scientists. Wiley. 330 pages.CrossRefGoogle Scholar
Webster’s (1989). Webster’s Encyclopaedic Unabridged Dictionary of the English Language. New Jersey: Gramercy Books.Google Scholar
Weishampel, J. F., Godin, J. R. & Henebry, G.M. (2001). Pantropical dynamics of “intact” rain forest canopy structure. Global Ecology and Biogeography, 10, 389–397.CrossRefGoogle Scholar
West, D. B. (2001). Introduction to Graph Theory, 2nd edn. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Westoby, M. (2006). Phylogenetic ecology at world scale, a new fusion between ecology and evolution. Ecology, 87, S163–S166.CrossRefGoogle ScholarPubMed
White, E. P., Morgan Ernset, S.K., Adler, P. B., Hurlberts, A. H. & Lyons, S.K. (2011). Integrating spatial and temporal approaches to understanding species richness. Philosophical Transactions of the Royal Society B—Biological Sciences, 365, 3633–3643.CrossRefGoogle Scholar
White, G. C. & Garrott, R.A. (1990). Analysis of Wildlife Radio-Tracking Data. New York: Academic Press.Google Scholar
Whittaker, R. H. (1975). Communities and Ecosystems, 2nd edn. New York: MacMillan.Google Scholar
Whittaker, R. H. (1977). Evolution of species diversity in land communities. Evolutionary Biology, 10, 1–67.Google Scholar
Whittle, P. (1954). On stationary processes in the plane. Biometrika, 41, 434–449.CrossRefGoogle Scholar
Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385–397.CrossRefGoogle Scholar
Wiens, J. A., Crist, T. O. & Milne, B.T. (1993). On quantifying insect movements. Environmental Entomology, 22, 709–715.CrossRefGoogle Scholar
Wikle, C. K. (2003). Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology, 84, 1382–1394.CrossRefGoogle Scholar
Wilbur, H. M. (1997). Experimental ecology of food webs: complex systems in temporary ponds. Ecology, 78, 2279–2302.CrossRefGoogle Scholar
Williams, B. (1992). The measurement of sinuosity in correlated random walks. Journal of Theoretical Biology, 155, 437–442.CrossRefGoogle Scholar
Wilson, J. B. (1988). The effect of initial advantage on the course of plant competition. Oikos, 51, 19–24.CrossRefGoogle Scholar
Wilson, J. B. & Agnew, A.D.Q. (1992). Positive-feedback switches in plant communities. Advances in Ecological Research, 23, 263–336.CrossRefGoogle Scholar
Wilson, M. V. & Mohler, C.L. (1983). Measuring compositional change along gradients. Vegetatio, 54, 129–141.CrossRefGoogle Scholar
Wilson, M. V. & Shmida, A. (1984). Measuring beta diversity with presence–absence data. Journal of Ecology, 72, 1055–1064.CrossRefGoogle Scholar
Windle, M. J. S., Rose, G. A., Devillers, R. & Fortin, M.-J. (2010). Exploring spatial non-stationarity of fisheries survey data using geographically weighted regression (GWR): an example from the Northwest Atlantic. ICES Journal of Marine Science, 67, 145–54.CrossRefGoogle Scholar
Wolfram, S. (2002). A New Kind of Science. Champagne: Wolfram Media.Google Scholar
Womble, W. H. (1951). Differential systematics. Science, 114, 315–322.CrossRefGoogle ScholarPubMed
Woodcock, C. & Strahler, A. (1987). The factor of scale in remote sensing. Remote Sensing of Environment, 21, 311–322.CrossRefGoogle Scholar
Woollons, R. C. (1998). Even-aged stand mortality estimation through a two-step regression process. Forest Ecology and Management, 105, 189–195.CrossRefGoogle Scholar
Wright, D. H. & Reeves, J.H. (1992). On the meaning and measurement of nestedness of species assemblages. Oecologia, 92, 416–428.CrossRefGoogle ScholarPubMed
Wright, F. (1990). The effective number of codons used in a gene. Gene, 87, 23–29.CrossRefGoogle ScholarPubMed
Wright, S. (1931). Statistical theory of evolution. Journal of the American Statistical Association, 26, 201–208.CrossRefGoogle Scholar
Wu, J. (2004). Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecology, 19, 125–138.CrossRefGoogle Scholar
Wu, J. & Qi, Y. (2000). Dealing with scale in landscape analysis: an overview. Geographic Information Sciences, 6, 1–5.Google Scholar
Wu, J. G., Shen, W. J., Sun, W. Z. & Tueller, P.T. (2002). Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecology, 17, 761–782.CrossRefGoogle Scholar
Wu, X. B., Thuro, T. L. & Whisenant, S.G. (2000). Fragmentation and changes in hydrologic function of tiger bush landscapes, south-west Niger. Journal of Ecology, 88, 790–800.CrossRefGoogle Scholar
Wulder, M. A. & Boots, B. (1998). Local spatial autocorrelation characteristics of remotely sensed imagery assessed with the Getis statistic. International Journal of Remote Sensing, 19, 2223–2331.CrossRefGoogle Scholar
Wulder, M. A., White, J. C., Coops, N. C., Nelson, T. & Boots, B. (2007). Using local spatial autocorrelation to compare outputs from a forest growth model. Ecological Modelling, 209, 264–276.CrossRefGoogle Scholar
Wulff, B. L. & Webb, K.L. (1969). Intertidal zonation of marine algae at Gloucester Point, Virginia. Chesapeake Science, 10, 29–35.CrossRefGoogle Scholar
Yarranton, G. A. (1966). A plotless method of sampling vegetation. Journal of Ecology, 59, 224–237.Google Scholar
Yarranton, G. A. & Morrison, R.G. (1974). Spatial dynamics of primary succession: nucleation. Journal of Ecology, 62, 417–428.CrossRefGoogle Scholar
Young, C. G., Dale, M. R. T. & Henry, G.H.R. (1999). Spatial pattern of vegetation in high Arctic sedge meadows. Écoscience, 6, 556–564.CrossRefGoogle Scholar
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.CrossRefGoogle Scholar
Zapala, M. A. & Schork, N.J. (2006). Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proceedings of the National Academy of Sciences of the United States of America, 103, 19 430–19 435.CrossRefGoogle ScholarPubMed
Zar, J. H. (1984). Biostatistical Analysis, 2nd edn. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mark R. T. Dale, University of Northern British Columbia, Marie-Josée Fortin, University of Toronto
  • Book: Spatial Analysis
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511978913.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mark R. T. Dale, University of Northern British Columbia, Marie-Josée Fortin, University of Toronto
  • Book: Spatial Analysis
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511978913.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mark R. T. Dale, University of Northern British Columbia, Marie-Josée Fortin, University of Toronto
  • Book: Spatial Analysis
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511978913.014
Available formats
×