Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T17:18:09.028Z Has data issue: false hasContentIssue false

Appendix I - Additional knowledge-based analysis approaches

Published online by Cambridge University Press:  05 February 2016

Raul Rodriguez-Esteban
Affiliation:
Roche Inc
William T. Loging
Affiliation:
Mount Sinai School of Medicine, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, P. and Searls, D. B. Literature mining in support of drug discovery. Briefings in Bioinformatics. 2008;9(6):479–492.CrossRefGoogle ScholarPubMed
Agarwal, P. and Searls, D. B. Can literature analysis identify innovation drivers in drug discovery?Nature Reviews Drug Discovery. 2009;8(11):865–878.CrossRefGoogle ScholarPubMed
Aronson, A. R. Effective mapping of biomedical text to the UMLS Metathesaurus: The MetaMap program. Proceedings of the AMIA Symposium. 2001;17–21.Google ScholarPubMed
Attwood, T. K., Kell, D. B., McDermott, P., et al. Utopia documents: Linking scholarly literature with research data. Bioinformatics. 2010;26(18):i568–574.CrossRefGoogle ScholarPubMed
Bui, D. D. and Zeng-Treitler, Q.Learning regular expressions for clinical text classification. Journal of the American Medical Information Association. 2014;21(5):850–857.CrossRefGoogle ScholarPubMed
Burger, J. D., Doughty, E., Khare, R., et al. Hybrid curation of gene-mutation relations combining automated extraction and crowdsourcing. Database (Oxford). 2014;2014(pii):bau094.CrossRefGoogle ScholarPubMed
Campbell, S. J., Gaulton, A., Marshall, J., et al. Visualizing the drug target landscape. Drug Discovery Today. 2012;17(Suppl):S3–15.CrossRefGoogle ScholarPubMed
Caviness, G., Jiang, X., Qi, Z. and Rodriguez-Esteban, R. An Integrative Approach on Genomic, Genetic and Text Mining Based Information for Psoriasis Target Identification. Non-Clinical Biostatistics Conference, Cambridge, MA, 2011.
Chang, J. T., Schütze, H. and Altman, R. B. Creating an online dictionary of abbreviations from MEDLINE. Journal of the American Medical Information Association. 2002;9(6):612–620.CrossRefGoogle ScholarPubMed
Chen, L. and Friedman, C.Extracting phenotypic information from the literature via natural language processing. Studies in Health Technology Information. 2004;107(Pt 2):758–762.Google ScholarPubMed
Chen, L., Liu, H. and Friedman, C.Gene name ambiguity of eukaryotic nomenclatures. Bioinformatics. 2005;21(2):248–256.CrossRefGoogle ScholarPubMed
Chinchor, N. MUC-4 evaluation metrics. Proceedings of the 4th Conference on Message Understanding, 1992.
Chinchor, N. Overview of MUC-7. 7th Message Understanding Conference (MUC-7), 1998.
Cho, C. R., Labow, M., Reinhardt, M., van Oostrum, J. and Peitsch, M. C. The application of systems biology to drug discovery. Current Opinion in Chemical Biology. 2006;10(4):294–302.CrossRefGoogle ScholarPubMed
Cohen, A. M., Hersh, W. R., Dubay, C. and Spackman, K.Using co-occurrence network structure to extract synonymous gene and protein names from MEDLINE abstracts. BMC Bioinformatics. 2005;6:103.CrossRefGoogle ScholarPubMed
Cohen, K. B., Dolbey, A. E., Acquaah-Mensah, G. K. and Hunter, L.Contrast and variability in gene names. ACL Workshop on Natural Language Processing in the Biomedical Domain. 2002;14–20.Google Scholar
Cokol, M. and Rodriguez-Esteban, R.Visualizing evolution and impact of biomedical fields. Journal of Biomedical Information. 2008;41(6):1050–1052.Google ScholarPubMed
Comeau, D.C., Islamaj Doğan, R., Ciccarese, P., et al. BioC: a minimalist approach to interoperability for biomedical text processing. Database (Oxford). 2013;2013:bat064. doi: 10.1093/database/bat064Google ScholarPubMed
Czarnecki, J., Nobeli, I., Smith, A. M. and Shepherd, A. J. A text-mining system for extracting metabolic reactions from full-text articles. BMC Bioinformatics. 2012;13:172.CrossRefGoogle ScholarPubMed
Davis, A. P., Wiegers, T. C., Roberts, P. M., et al. A CTD–Pfizer collaboration: manual curation of 88,000 scientific articles text mined for drug–disease and drug–phenotype interactions. Database (Oxford). 2013;2013:bat080.CrossRefGoogle ScholarPubMed
Ding, J., Berleant, D., Nettleton, D. and Wurtele, E.Mining MEDLINE: Abstracts, sentences, or phrases?Pacific Symposia on Biocomputing. 2002:326–337.Google ScholarPubMed
Doğan, R. I., Leaman, R. and Lu, Z. NCBI disease corpus: A resource for disease name recognition and concept normalization. Journal of Biomedical Information. 2014;47:1–10.Google ScholarPubMed
Franceschini, A., Szklarczyk, D., Frankild, S., et al. STRING v9.1: Protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Research. 2013;41(Database issue):D808–815.Google Scholar
Friedman, C., Kra, P., Yu, H., Krauthammer, M. and Rzhetsky, A.GENIES: A natural-language processing system for the extraction of molecular pathways from journal articles. Bioinformatics. 2001;17(Suppl 1):S74–82.CrossRefGoogle ScholarPubMed
Frijters, R., van Vugt, M., Smeets, R., et al. Literature mining for the discovery of hidden connections between drugs, genes and diseases. PLoS Computers and Biology. 2010;6(9).CrossRefGoogle ScholarPubMed
Fukuda, K., Tamura, A., Tsunoda, T. and Takagi, T.Toward information extraction: Identifying protein names from biological papers. Pacific Symposia on Biocomputing. 1998;707–718.Google ScholarPubMed
Funk, C., Baumgartner, W. Jr, Garcia, B., et al. Large-scale biomedical concept recognition: An evaluation of current automatic annotators and their parameters. BMC Bioinformatics. 2014;15(1):59.CrossRefGoogle ScholarPubMed
Furrer, L., Clematide, S., Marques, H., et al. Collection-wide extraction of protein–protein interactions. 6th International Symposium on Semantic Mining in Biomedicine (SMBM). Aveiro, Portugal, October 2014.
Gerner, M., Nenadic, G. and Bergman, C. M. LINNAEUS: A species name identification system for biomedical literature. BMC Bioinformatics. 2010;11:85.CrossRefGoogle ScholarPubMed
Gomes, B., Hayes, W. and Podowski, R. M. Text mining. In In Silico Technologies in Drug Target Identification and Validation (pp. 153–194), ed. Leon, D and . Markel, S. Boca Raton, FL: CRC Press, 2006.Google Scholar
Grishman, R. and Sundheim, B. Message Understanding Conference-6: A brief history. 16th Conference on Computational Linguistics. 1996(1):466–471.Google Scholar
van Haagen, H. H., ‘t Hoen, P. A., Botelho Bovo, A., et al. Novel protein–protein interactions inferred from literature context. PLoSONE. 2009;4(11):e7894.CrossRefGoogle ScholarPubMed
Hakenberg, J., Schmeier, S., Kowald, A., Klipp, E. and Leser, U.Finding kinetic parameters using text mining. OMICS. 2004;8(2):131–152.CrossRefGoogle ScholarPubMed
Hakenberg, J., Gerner, M., Haeussler, M., et al. The GNAT library for local and remote gene mention normalization. Bioinformatics. 2011;27(19):2769–2771.CrossRefGoogle ScholarPubMed
Harland, L. and Gaulton, A.Drug target central. Expert Opinion in Drug Discovery. 2009;4(8):857–872.CrossRefGoogle ScholarPubMed
Hatzivassiloglou, V., Duboué, P. A. and Rzhetsky, A.Disambiguating proteins, genes, and RNA in text: A machine learning approach. Bioinformatics. 2001;17(Suppl 1):S97–106.CrossRefGoogle ScholarPubMed
Hatzivassiloglou, V. and Weng, W.Learning anchor verbs for biological interaction patterns from published text articles. International Journal of Medical Information. 2002;67(1–3):19–32.CrossRefGoogle ScholarPubMed
Herrero-Zazo, M., Segura-Bedmar, I., Martínez, P. and Declerck, T.The DDI corpus: An annotated corpus with pharmacological substances and drug–drug interactions. Journal of Biomedical Information. 2013;46(5):914–920.Google ScholarPubMed
Hersh, W. R. Information Retrieval: A Health and Biomedical Perspective (3rd edition). New York, NY: Springer, 2009.CrossRefGoogle Scholar
Hersh, W. R., Bhupatiraju, R. T., Ross, L., et al. Enhancing access to the Bibliome: The TREC 2004 Genomics Track. Journal of Biomedical Discovery and Collaboration. 2006;1:3.CrossRefGoogle ScholarPubMed
Hirschman, L., Burns, G. A., Krallinger, M., et al. Text mining for the biocuration workflow. Database (Oxford). 2012;2012:bas020.CrossRefGoogle ScholarPubMed
Hirschman, L., Morgan, A. A. and Yeh, A. S. Rutabaga by any other name: Extracting biological names. Journal of Biomedical Information. 2002;35(4):247–259.Google ScholarPubMed
Hirst, G.Near-synonymy and the structure of lexical knowledge. AAAI Symposium on Representation and Acquisition of Lexical Knowledge: Polysemy, Ambiguity, and Generativity. 1995:51–56.Google Scholar
Hu, Y., Hines, L. M., Weng, H., et al. Analysis of genomic and proteomic data using advanced literature mining. Journal of Proteome Research. 2003;2(4):405–412.CrossRefGoogle ScholarPubMed
Hu, Z. Z., Narayanaswamy, M., Ravikumar, K. E., Vijay-Shanker, K., Wu, C. H.Literature mining and database annotation of protein phosphorylation using a rule-based system. Bioinformatics. 2005;21(11):2759–2765.CrossRefGoogle ScholarPubMed
Hunter, L., Lu, Z., Firby, J., et al. OpenDMAP: An open source, ontology-driven concept analysis engine, with applications to capturing knowledge regarding protein transport, protein interactions and cell-type-specific gene expression. BMC Bioinformatics. 2008;9:78.CrossRefGoogle ScholarPubMed
Iossifov, I., Rodriguez-Esteban, R., Mayzus, I., Millen, K. J. and Rzhetsky, A.Looking at cerebellar malformations through text-mined interactomes of mice and humans. PLoS Computational Biology. 2009;5(11):e1000559.CrossRefGoogle ScholarPubMed
Jamieson, D. G., Roberts, P. M., Robertson, D. L., Sidders, B. and Nenadic, G.Cataloging the biomedical world of pain through semi-automated curation of molecular interactions. Database (Oxford). 2013;2013:bat033.CrossRefGoogle ScholarPubMed
Jessop, D. M., Adams, S. E., Willighagen, E. L., Hawizy, L. and Murray-Rust, P.OSCAR4: A flexible architecture for chemical text-mining. Journal of Cheminformation. 2011;3(1):41.CrossRefGoogle ScholarPubMed
Jimeno, A., Jimenez-Ruiz, E., Lee, V., et al. Assessment of disease named entity recognition on a corpus of annotated sentences. BMC Bioinformatics. 2008;9(Suppl 3):S3.CrossRefGoogle ScholarPubMed
Jonnalagadda, S. R. and Topham, P.NEMO: Extraction and normalization of organization names from PubMed affiliations. Journal of Biomedical Discovery Collaboration. 2010;5:50–75.Google ScholarPubMed
Jonquet, C., Shah, N. H. and Musen, M. A.The open biomedical annotator. Summit on Translational Bioinformation. 2009;2009:56–60.Google ScholarPubMed
Kabiljo, R., Clegg, A. B. and Shepherd, A. J.A realistic assessment of methods for extracting gene/protein interactions from free text. BMC Bioinformatics. 2009;10:233.CrossRefGoogle ScholarPubMed
Kageura, K. and Umino, B.Methods of automatic term recognition – A review. Terminology. 1996;3:259–289.CrossRefGoogle Scholar
Kim, J. D., Ohta, T. and Tsujii, J.Corpus annotation for mining biomedical events from literature. BMC Bioinformatics. 2008;9:10.CrossRefGoogle ScholarPubMed
Köhler, S., Doelken, S. C., Mungall, C. J., et al. The Human Phenotype Ontology project: Linking molecular biology and disease through phenotype data. Nucleic Acids Res. 2014;42(Database issue):D966–974.CrossRefGoogle ScholarPubMed
Krallinger, M., Leitner, F., Rabal, O., et al. Overview of the chemical compound and drug name recognition (CHEMDNER) task. Proceedings of the Fourth BioCreative Challenge Evaluation Workshop. 2013;2:2–33.Google Scholar
Krallinger, M., Leitner, F., Rodriguez-Penagos, C. and Valencia, A. Overview of the protein–protein interaction annotation extraction task of BioCreative II. Genome Biology. 2008;9(Suppl 2):S4.CrossRefGoogle ScholarPubMed
Krauthammer, M. and Nenadic, G.Term identification in the biomedical literatureJournal of Biomedical Information. 2004;37:512–526.Google ScholarPubMed
Kumar, V.Omics and literature mining. Methods in Molecular Biology. 2011;719:457–477.Google ScholarPubMed
Leaman, R. and Gonzalez, G. BANNER: An executable survey of advances in biomedical named entity recognition. Pacific Symposia on Biocomputing. 2008:652–663.Google ScholarPubMed
Leaman, R., Islamaj Dogan, R. and Lu, Z.DNorm: Disease name normalization with pairwise learning to rank. Bioinformatics. 2013;29(22):2909–2917.CrossRefGoogle ScholarPubMed
Li, C. X., Wang, R. J., Chen, P., Huang, H. and Su, Y. R. Interaction relation ontology learning. Journal of Computational Biology. 2014;21(1):80–88.CrossRefGoogle ScholarPubMed
Li, Y. and Agarwal, P.A pathway-based view of human diseases and disease relationships. PLoS ONE. 2009;4(2):e4346. doi: 10.1371/journal.pone.0004346.CrossRefGoogle ScholarPubMed
Liang, G. and Hai, T.Characterization of human activating transcription factor 4, a transcriptional activator that interacts with multiple domains of cAMP-responsive element-binding protein (CREB)-binding protein. Journal of Biological Chemistry. 1997;272(38):24088–24095.CrossRefGoogle ScholarPubMed
Liu, H., Hu, Z. Z., Torii, M., Wu, C. and Friedman, C.Quantitative assessment of dictionary-based protein named entity tagging. Journal of the American Medical Information Association. 2006;13(5):497–507.CrossRefGoogle ScholarPubMed
Liu, W., Islamaj Dogan, R., Kim, S., et al. Author name disambiguation for PubMed. Journal of the Association for Information Science and Technology. 2014;65(4):765–781.CrossRefGoogle Scholar
Loging, W., Harland, L. and Williams-Jones, B. High-throughput electronic biology: Mining information for drug discovery. Nature Reviews Drug Discovery. 2007;6(3):220–230.CrossRefGoogle ScholarPubMed
Lovis, C., Michel, P. A., Baud, R. and Scherrer, J. R. Word segmentation processing: A way to exponentially extend medical dictionaries. Medinfo. 1995;8(Pt 1):28–32.Google ScholarPubMed
Lu, Z. and Hirschman, L.Biocuration workflows and text mining: Overview of the BioCreative 2012 Workshop Track II. Database (Oxford). 2012;2012:bas043.CrossRefGoogle ScholarPubMed
Lu, Z., Kao, H. Y., Wei, C. H., et al. The gene normalization task in BioCreative III. BMC Bioinformatics. 2011;12(Suppl 8):S2.CrossRefGoogle ScholarPubMed
Malhotra, A., Younesi, E., Gurulingappa, H. and Hofmann-Apitius, M. “HypothesisFinder”: A strategy for the detection of speculative statements in scientific text. PLoS Computational Biology. 2013;9(7):e1003117.CrossRefGoogle ScholarPubMed
Mani, I., Hu, Z., Jang, S. B., et al. Protein name tagging guidelines: Lessons learned. Comparative and Functional Genomics. 2005;6(1–2):72–76.CrossRefGoogle ScholarPubMed
Midford, P. E., Dececchi, T. A., Balhoff, J. P., et al. The vertebrate taxonomy ontology: A framework for reasoning across model organism and species phenotypes. Journal of Biomedical Semantics. 2013;4(1):34.CrossRefGoogle ScholarPubMed
Mihăilă, C., Batista-Navarro, R. T. and Ananiadou, S. Analysing entity type variation across biomedical subdomains. Proceedings of the Third Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2012). 2012:1–7.Google Scholar
Mihăilă, C., Ohta, T., Pyysalo, S. and Ananiadou, S.BioCause: Annotating and analysing causality in the biomedical domain. BMC Bioinformatics. 2013;14:2.CrossRefGoogle ScholarPubMed
Milward, D., Bjäreland, M., Hayes, W., et al. Ontology-based interactive information extraction from scientific abstracts. Comparative and Functional Genomics. 2005;6(1–2):67–71.CrossRefGoogle ScholarPubMed
Milward, D., Blaschke, C., Neefs, J., et al. Flexible text mining strategies for drug discovery. Proceedings of the Second International Symposium on Semantic Mining in BioMedicine (SMBM). 2006:101–104.Google Scholar
Miwa, M., Ohta, T., Rak, R., et al. A method for integrating and ranking the evidence for biochemical pathways by mining reactions from text. Bioinformatics. 2013a;29(13):i44–52.CrossRefGoogle ScholarPubMed
Miwa, M., Pyysalo, S., Ohta, T. and Ananiadou, S.Wide coverage biomedical event extraction using multiple partially overlapping corpora. BMC Bioinformatics. 2013b;14:175.CrossRefGoogle ScholarPubMed
Morgan, A. A., Lu, Z., Wang, X., et al. Overview of BioCreative II gene normalization. Genome Biology. 2008;9(Suppl 2):S3.CrossRefGoogle ScholarPubMed
Murray, B. S., Choe, S. E., Woods, M., Ryan, T. E. and Liu, W.An in silico analysis of microRNAs: mining the miRNAome. Molecular bioSystems. 2010;6(10):1853–1862.CrossRefGoogle Scholar
Neves, M. L., Carazo, J. M. and Pascual-Montano, A.Moara: A Java library for extracting and normalizing gene and protein mentions. BMC Bioinformatics. 2010;11:157.CrossRefGoogle ScholarPubMed
Pafilis, E., Frankild, S. P., Fanini, L., et al. The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text. PLoS ONE. 2013;8(6):e65390.CrossRefGoogle ScholarPubMed
Pafilis, E., O'Donoghue, S. I., Jensen, L. J., et al. Reflect: Augmented browsing for the life scientist. Nature Biotechnology. 2009;27(6):508–510.CrossRefGoogle ScholarPubMed
Pustejovsky, J., Castaño, J., Cochran, B., Kotecki, M. and Morrell, M. Automatic extraction of acronym-meaning pairs from MEDLINE databases. Studies in Health Technology Information. 2001;84(Pt 1):371–375.Google ScholarPubMed
Pyysalo, S., Airola, A., Heimonen, J., et al. Comparative analysis of five protein–protein interaction corpora. BMC Bioinformatics. 2008;9(Suppl 3):S6.CrossRefGoogle ScholarPubMed
Pyysalo, S., Ohta, T., Rak, R., et al. Overview of the ID, EPI and REL tasks of BioNLP Shared Task 2011. BMC Bioinformatics. 2012;13(Suppl 11):S2.CrossRefGoogle ScholarPubMed
Rajpal, D. K., Kumar, V. and Agarwal, P.Scientific literature mining for drug discovery: A case study on obesity. Drug Development Research. 2011;72:201–208.CrossRefGoogle Scholar
Rebholz-Schuhmann, D., Marcel, S., Albert, S., et al. Automatic extraction of mutations from Medline and cross-validation with OMIM. Nucleic Acids Research. 2004;32(1):135–142.CrossRefGoogle ScholarPubMed
Rebholz-Schuhmann, D., Kafkas, S., Kim, J. H., et al. Evaluating gold standard corpora against gene/protein tagging solutions and lexical resources. Journal of Biomedical Semantics. 2013;4(1):28. doi: 10.1186/20411480428.CrossRefGoogle ScholarPubMed
Rinaldi, F., Clematide, S., Marques, H., et al. OntoGene web services for biomedical text mining. BMC Bioinformatics. 2014;15(Suppl 14):S6.CrossRefGoogle ScholarPubMed
Rinaldi, F., Kappeler, T., Kaljurand, K., et al. OntoGene in BioCreative II. Genome Biology. 2008;9(Suppl 2):S13.CrossRefGoogle ScholarPubMed
Rocktäschel, T., Weidlich, M. and Leser, U.ChemSpot: A hybrid system for chemical named entity recognition. Bioinformatics. 2012;28(12):1633–1640.CrossRefGoogle ScholarPubMed
Roberts, P. M. and Hayes, W. S. Information needs and the role of text mining in drug development. Pacific Symposia on Biocomputing. 2008:592–603.Google ScholarPubMed
Rodriguez-Esteban, R.Biomedical text mining and its applications. PLoS Computational Biology. 2009; 5(12):e1000597.CrossRefGoogle ScholarPubMed
Rodriguez-Esteban, R. and Iossifov, I.Figure mining for biomedical research. Bioinformatics. 2009;25(16):2082–2084.CrossRefGoogle ScholarPubMed
Rodriguez-Esteban, R., Iossifov, I. and Rzhetsky, A. Imitating manual curation of text-mined facts in biomedicine. PLoS Computational Biology. 2006;2(9):e118.CrossRefGoogle ScholarPubMed
Rodriguez-Esteban, R. and Loging, W. T. Quantifying the complexity of medical research. Bioinformatics. 2013;29(22):2918–2924.CrossRefGoogle ScholarPubMed
Rodriguez-Esteban, R., Roberts, P. M. and Crawford, M. E. Identifying and classifying biomedical perturbations in text. Nucleic Acids Research. 2009;37(3):771–777.CrossRefGoogle ScholarPubMed
Romacker, M., Grandjean, N., Parisot, P., et al. The UltraLink: An expert system for contextual hyperlinking in knowledge management. In Computer Applications in Pharmaceutical Research and Development, ed. Ekins, S.. Hoboken, NJ: Wiley, 2006.Google Scholar
Rzhetsky, A. and Evans, J. A. War of ontology worlds: Mathematics, computer code, or Esperanto?PLoS Computational Biology. 2011;7(9):e1002191.CrossRefGoogle ScholarPubMed
Rzhetsky, A., Koike, T., Kalachikov, S., et al. A knowledge model for analysis and simulation of regulatory networks. Bioinformatics. 2000;16(12):1120–1128.CrossRefGoogle ScholarPubMed
Saric, J., Jensen, L. J., Ouzounova, R., Rojas, I. and Bork, P.Extraction of regulatory gene/protein networks from Medline. Bioinformatics. 2006 ;22(6):645–650.CrossRefGoogle ScholarPubMed
Sekimizu, T., Park, H. S. and Tsujii, J.Identifying the interaction between genes and gene products based on frequently seen verbs in Medline abstracts. Genome Information Series Workshop Genome Information. 1998;9:62–71.Google ScholarPubMed
Seringhaus, M. R., Cayting, P. D. and Gerstein, M. B. Uncovering trends in gene naming. Genome Biology. 2008;9(1):401.CrossRefGoogle ScholarPubMed
Shatkay, H., Pan, F., Rzhetsky, A. and Wilbur, W. J. Multi-dimensional classification of biomedical text: Toward automated, practical provision of high-utility text to diverse users. Bioinformatics. 2008;24(18):2086–2093.CrossRefGoogle ScholarPubMed
Smith, C. L., Goldsmith, C. A. and Eppig, J. T. The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biology. 2005;6(1):R7.CrossRefGoogle ScholarPubMed
Su, L. K., Burrell, M., Hill, D. E., et al. APC binds to the novel protein EB1. Cancer Research. 1995;55(14):2972–2977.Google ScholarPubMed
Swanson, D. R. Fish oil, Raynaud's syndrome, and undiscovered public knowledge. Perspectives in Biology and Medicine. 1986;30(1):7–18.CrossRefGoogle ScholarPubMed
Takeda, S., Onishi, Y., Kawamura, T. and Maeda, H.Clinical spectrum of pulmonary inflammatory myofibroblastic tumor. Interactive Cardiovascular and Thoracic Surgery. 2008;7(4):629–633.CrossRefGoogle ScholarPubMed
Tanenblatt, M., Coden, A. and Sominsky, I. The ConceptMapper approach to named entity recognition. Proceedings of Seventh International Conference on Language Resources and Evaluation. 2010.
Tari, L., Küntzer, J., Patel, J., et al. Mining gene-centric relationships from literature to support drug discovery. IEEE International Conference on Bioinformatics and Biomedicine. 2011.
Thompson, P., Nawaz, R., McNaught, J. and Ananiadou, S. Enriching a biomedical event corpus with meta-knowledge annotation. BMC Bioinformatics. 2011;12:393.CrossRefGoogle ScholarPubMed
Tikk, D., Solt, I., Thomas, P. and Leser, U.A detailed error analysis of 13 kernel methods for protein–protein interaction extraction. BMC Bioinformatics. 2013;14:12.CrossRefGoogle ScholarPubMed
Tomanek, K., Wermter, J. and Hahn, U. Sentence and token splitting based on conditional random fields. Proceedings of the 10th Conference of the Pacific Association for Computational Linguistics (PACLING), Melbourne, Australia, 2007.
Torii, M., Li, G., Li, Z., et al. RLIMS-P: An online text-mining tool for literature-based extraction of protein phosphorylation information. Database (Oxford). 2014;2014.CrossRefGoogle ScholarPubMed
Torvik, V. I. and Smalheiser, N. R. Author name disambiguation in MEDLINE. ACM Transactions in Knowledge Discovery Data. 2009;3(3).pii: 11.Google Scholar
Van Landeghem, S., Hakala, K., Rönnqvist, S., et al. Exploring biomolecular literature with EVEX: Connecting genes through events, homology, and indirect associations. Advances in Bioinformatics. 2012;2012:582765.CrossRefGoogle ScholarPubMed
Varadharajalu, A., Liu, W. and Wong, W.Author name disambiguation for ranking and clustering pubmed data using NetClus. In: AI 2011: Advances in Artificial Intelligence. Lecture Notes in Computer Science. 2011(7106):152–161.Google Scholar
Weeber, M. Drug discovery as an example of literature-based discovery. In Computational Discovery of Scientific Knowledge (pp. 290–306), ed. Džeroski, S. and Todorovski, L.. New York, NY: Springer, 2007.Google Scholar
Weeber, M., Klein, H., Berg, L. and Vos, R. Using concepts in literature-based discovery: Simulating Swanson's Raynaud–fish oil and migraine–magnesium discoveries. Journal of the American Society for Information Sciences. 2001;52(7):548–557.Google Scholar
Weeber, M., Kors, J. A. and Mons, B. Online tools to support literature-based discovery in the life sciences. Briefings in Bioinformation. 2005;6(3):277–286.Google ScholarPubMed
Wei, C. H., Harris, B. R., Kao, H. Y. and Lu, Z. tmVar: A text mining approach for extracting sequence variants in biomedical literature. Bioinformatics. 2013;29(11):1433–1439.CrossRefGoogle ScholarPubMed
Wilkowski, B., Fiszman, M., Miller, C. M., et al. Graph-based methods for discovery browsing with semantic predications. AMIA Annual Symposium Proceedings. 2011;2011:1514–1523.Google ScholarPubMed
Wren, J. D. and Garner, H. R. Heuristics for identification of acronym-definition patterns within text: Towards an automated construction of comprehensive acronym-definition dictionaries. Methods of Information in Medicine. 2002;41(5):426–434.CrossRefGoogle ScholarPubMed
Wu, C., Schwartz, J. and Nenadic, G. PathNER: A tool for systematic identification of biological pathway mentions in the literature. BMC Systems Biology. 2013;7(Suppl 3):S2.CrossRefGoogle ScholarPubMed
Yang, Z., Li, Y., Cai, J. and Nyberg, E.QUADS: Question answering for decision support. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval (SIGIR ‘14). 2014:375–384.Google Scholar
Xu, R. and Wang, Q.Large-scale extraction of accurate drug–disease treatment pairs from biomedical literature for drug repurposing. BMC Bioinformatics. 2013;14:181.CrossRefGoogle ScholarPubMed
Xu, Y., Hua, J., Ni, Z., et al. Anatomical entity recognition with a hierarchical framework augmented by external resources. PLoS ONE. 2014;9(10):e108396.CrossRefGoogle ScholarPubMed
Zhang, L., Berleant, D., Ding, J. and Wurtele, E. S. Automatic extraction of biomolecular interactions: an empirical approach. BMC Bioinformatics. 2013;14:234.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×