Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-30T10:22:17.422Z Has data issue: false hasContentIssue false

12 - A brief review of other methods of computer simulation

Published online by Cambridge University Press:  28 February 2011

David P. Landau
Affiliation:
University of Georgia
Kurt Binder
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Get access

Summary

INTRODUCTION

In the previous chapters of this text we have examined a wide variety of Monte Carlo methods in depth. Although these are exceedingly useful for many different problems in statistical physics, there are some circumstances in which the systems of interest are not well suited to Monte Carlo study. Indeed there are some problems which may not be treatable by stochastic methods at all, since the time-dependent properties as constrained by deterministic equations of motion are the subject of the study. The purpose of this chapter is thus to provide a very brief overview of some of the other important simulation techniques in statistical physics. Our goal is not to present a complete list of other methods or even a thorough discussion of these methods which are included but rather to offer sufficient background to enable the reader to compare some of the different approaches and better understand the strengths and limitations of Monte Carlo simulations.

MOLECULAR DYNAMICS

Integrationmethods (microcanonical ensemble)

Molecular dynamics methods are those techniques which are used to numerically integrate coupled equations of motion for a system which may be derived, e.g. in the simplest case from Lagrange's equations or Hamilton's equations. Thus, the approach chosen is to deal with many interacting atoms or molecules within the framework of classical mechanics. We begin this discussion with consideration of systems in which the number of particles N, the system volume V, and the total energy of the system E are held constant.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×