Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T09:46:47.587Z Has data issue: false hasContentIssue false

16 - Theory of electron and nuclear spins in III–V semiconductor and carbon-based dots

from Part V - Electron transport in quantum dots fabricated by lithographic techniques from III–V semiconductors and graphene

Published online by Cambridge University Press:  05 August 2012

H. Ribeiro
Affiliation:
University of Konstanz, Germany
G. Burkard
Affiliation:
University of Konstanz, Germany
Alexander Tartakovskii
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quantum Dots
Optics, Electron Transport and Future Applications
, pp. 277 - 295
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cohen-Tannoudji, C., Diu, B. and Laloë, F. 2000. An application of perturbation theory: the fine and hyperfine structure of the hydrogen atom. Pages 1209–1282 of: Quantum Mechanics Vol. 2. Wiley-Interscience.
[2] Abragam, A. 1961. The Principles of Nuclear Magnetism. Oxford.
[3] Coish, W. A. 2008. Spin in quantum dots: hyperfine interaction, transport, and coherent control. Ph.D. thesis, University of Basel.Google Scholar
[4] Yafet, Y. 1961. Hyperfine interaction due to orbital magnetic moment of electrons with large g factors. J. Phys. Chem. Solids, 21, 99–104.Google Scholar
[5] Gr'ncharova, E. I. and Perel', V. I. 1977. Relaxation of nuclear spins interacting with holes in semiconductors. Sov. Phys. Semicond., 11, 997.Google Scholar
[6] Fisher, J., Coish, W. A., Bulaev, D. V. and Loss, D. 2008. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev.B, 78, 155329.Google Scholar
[7] Eble, B., Testelin, C., Desfonds, P. et al. 2009. Hole–nuclear spin interaction in quantum dots. Phys. Rev. Lett., 102, 146601.Google Scholar
[8] Fisher, J., Trauzettel, B. and Loss, D. 2009. Hyperfine interaction and electron-spin decoherence in graphene and carbon nanotube quantum dots. Phys. Rev.B, 80, 155401.Google Scholar
[9] Palyi, A. and Burkard, G. 2009. Hyperfine-induced valley mixing and the s pin-valley blockade in carbon-based quantum dots. Phys. Rev.B, 80, 201404(R).Google Scholar
[10] Cohen-Tannoudji, C., Diu, B. and Laloë, F. 2000. Electric multipole moments. Pages 1059–1071 of: Quantum Mechanics Vol. 2. Wiley-Interscience.
[11] Klauder, J. R. and Anderson, P. W. 1962. Spectral diffusion decay in spin resonance experiments. Phys. Rev., 125, 912–932.Google Scholar
[12] de Sousa, R. and Das Sarma, S. 2003. Theory of nuclear-induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots. Phys. Rev.B, 68, 115322.Google Scholar
[13] Coish, W. A. and Baugh, J. 2009. Nuclear spins in nanostrucutres. Phys. Status SolidiB, 246, 2203–2215.Google Scholar
[14] Salis, G., Fuchs, D. T., Kikkawa, J. M. et al. 2001. Optical manipulation of nuclear spin by at wo-dimensional electron gas. Phys. Rev. Lett., 86, 2677.Google Scholar
[15] Salis, G., Awschalom, D. D., Ohno, Y. and Ohno, H. 2001. Origin of enhanced dynamic nuclear polarization and all-optical nuclear magnetic resonance in GaAs quantum wells. Phys. Rev.B, 64, 195304.Google Scholar
[16] Yusa, G., Muraki, K., Takashina, K., Hashimoto, K. and Hirayama, Y. 2005. Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device. Nature, 434, 1001.
[17] Leuenberger, M. N., Loss, D., Poggio, M. and Awschalon, D. 2002. Quantum information processing with large nuclear spins in GaAs semiconductors. Phys. Rev. Lett., 89, 207601.Google Scholar
[18] Maletinsky, P., Kroner, M. and Imamoǧlu, A. 2009. Breakdown of the nuclear-spin– temperature approach in quantum-dot demagnetization experiments. Nature Phys., 5, 407–411.Google Scholar
[19] Loss, D. and DiVincenzo, D. P. 1998. Quantum computation with quantum dots. Phys. Rev.A, 57, 120.Google Scholar
[20] Mermin, N. D. 2007. Quantum Computer Science. Cambridge University Press.
[21] Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. and Vandersypen, L. M. K. 2007. Spins in few-electron quantum dots. Rev. Mod. Phys, 79, 1217.Google Scholar
[22] Hanson, R. and Awschalom, D. D. 2008. Coherent manipulation of single spins in semiconductors. Nature, 453, 1043.
[23] Chirolli, L. and Burkard, G. 2008. Decoherence in solid-state qubits. Adv. Physics, 57, 225–285.Google Scholar
[24] Khaetskii, A. V., Loss, D. and Glazman, L. 2002. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett, 88, 186802.Google Scholar
[25] Coish, W. A. and Loss, D. 2004. Hyperfine interaction in a quantum dot: non-markovian electron spin dynamics. Phys. Rev.B, 70, 195340.Google Scholar
[26] Burkard, G., Loss, D. and DiVincenzo, D. P. 1999. Coupled quantum dots as quantum gates. Phys. Rev.B, 59, 2070–2078.Google Scholar
[27] Koppens, F. H. L., Folk, J. A., Elzerman, J. M. et al. 2005. Control and detection of singlet–triplet mixing in a random nuclear field. Science, 309, 1346.Google Scholar
[28] Jouravlev, O. N. and Nazarov, Y. V. 2006. Electron transport in a double quantum dot governed by a nuclear magnetic field. Phys. Rev. Lett, 96, 176804.Google Scholar
[29] Ono, K., Austing, G. K., Tokura, Y. and Tarucha, S. 2002. Current rectification by Pauli exclusion i n a weekly coupled double quantum dot system. Science, 297, 1313.Google Scholar
[30] Stoof, T. H. and Nazarov, Y. V. 1996. Time-dependent resonant tunneling via two discrete states. Phys. Rev.B, 53, 1050.Google Scholar
[31] Breuer, H. P. and Petruccione, F. 2002. Quantum master equations. Pages 105–209 of: The Theory of O pen Quantum Systems. Oxford University Press.
[32] Nazarov, Y. V. and Blanter, Y. M. 2009. Quantum Transport. Cambridge University Press.
[33] Levy, J. 2002. Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Phys. Rev. Lett., 89, 147902.Google Scholar
[34] Petta, J. R., Johnson, A. C., Taylor, J. M. et al. 2005. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 309, 2180.Google Scholar
[35] Coish, W. A. and Loss, D. 2005. Singlet–triplet decoherence due to nuclear spins in a double quantum dot. Phys. Rev.B, 72, 125337.Google Scholar
[36] Laird, E. A., Petta, J. R., Johnson, A. C. et al. 2005. Effect of exchange interaction on spin dephasing in a double quantum dot. Phys. Rev. Lett., 97, 056801.Google Scholar
[37] Klauser, D., Coish, W. A. and Loss, D. 2006. Nuclear spin state narrowing via gate-controlled Rabi oscillations in a double quantum dot. Phys. Rev.B, 73, 205302.Google Scholar
[38] Stepanenko, D., Burkard, G., Giedke, G. and Imamoǧlu, A. 2006. Enhancement of electron spin coherence by optical preparation of nuclear spins. Phys. Rev. Lett., 96, 136401.Google Scholar
[39] Petta, J. R., Taylor, J. M., Johnson, A. C. et al. 2008. Dynamic nuclear polarization with single electron spins. Phys. Rev. Lett., 100, 067601.Google Scholar
[40] Reilly, D. J., Taylor, J. M., Petta, J. R. et al. 2008. Suppressing spin qubit dephasing by nuclear state preparation. Science, 321, 817.Google Scholar
[41] Ribeiro, H. and Burkard, G. 2009. Nuclear state preparation via Landau–Zener–Stückelberg transitions in double quantum dots. Phys. Rev. Lett., 102, 216802.Google Scholar
[42] Landau, L. D. 1932. On the theory of transfer of energy at collisions II. Phys. Z. Sowjetunion, 2, 46.Google Scholar
[43] Zener, C. 1932. Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond.A, 137, 696.Google Scholar
[44] Stückelberg, E. C. G. 1932. Theory of inelastic collisions between atoms (Theory of inelastic collisions between atoms, using two simultaneous differential equations). Helv. Phys. Acta, 5, 369.Google Scholar
[45] Majorana, E. 1932. Oriented atoms in a tunable magnetic field. Nuovo Cimento, 9, 43.Google Scholar
[46] Vitanov, N. V. and Garraway, B. M. 1996. Landau–Zener model: effects of finite coupling duration. Phys. Rev.A, 53, 4288.Google Scholar
[47] Vasilev, G. S., Ivanov, S. S. and Vitanov, N. V. 2007. Degenerate Landau–Zener model: analytical solution. Phys. Rev.A, 75, 013417.Google Scholar
[48] Shevchenko, S. N., Ashhab, S. and Nori, F. 2010. Landau–Zener–Stückelberg interferometry. Physics Reports, 492, 1–30.
[49] Breuer, H. P. and Petruccione, F. 2002. Quantum probability. Pages 57–101 of: The Theory of Open Quantum Systems. Oxford University Press.
[50] Preskill, J. 2002. Foundations II: Measurement and Evolution. Lecture Notes on Quantum Computation. http://www.theory.caltech.edu/preskill/ph229.
[51] Petta, J. R., Lu, H. and Gossard, A. C. 2010. A coherent beam splitter for electronic spin states. Science, 327, 669.Google Scholar
[52] Ribeiro, H., Petta, J. R. and Burkard, G. 2010. Harnessing the GaAs quantum dot nuclear spin for quantum control. Phys. Rev.B, 82, 115445.Google Scholar
[53] Trauzettel, B., Bulaev, D. V., Loss, D. and Burkard, G. 2007. Spin qubits in graphene quantum dots. Nat. Phys., 3, 192.Google Scholar
[54] Churchill, H. O. H., Bestwick, A. J., Harlow, J. W. et al. 2005. Electron–nuclear interaction in 13C nanotube double quantum dots. Nat. Phys., 5, 321.Google Scholar
[55] Yazyev, O. V. 2008. Hyperfine interactions in graphene and related carbon nanostructures. Nano Lett., 8, 1011.Google Scholar
[56] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novosolev, K. S. and Geim, A. K. 2009. Electronic properties of graphene. Rev. Mod. Phys., 81, 109.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×