Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-22T12:03:07.318Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

13 - Supersymmetric dynamics

from Part 2 - Supersymmetry

Michael Dine
Affiliation:
University of California, Santa Cruz
Get access

Summary

In the previous chapter, we learned how to build realistic particle physics models based on supersymmetry. There are already significant constraints on such theories, and experiments at the LHC will test whether these sorts of ideas are correct.

If supersymmetry is discovered, the question will become: how is supersymmetry broken? Supersymmetry breaking offers particular promise for explaining large hierarchies. Consider the non-renormalization theorems. Suppose that we have a model consisting of chiral fields and gauge interactions. If the superpotential is such that supersymmetry is unbroken at tree level, the non-renormalization theorems for the superpotential which we proved in Section 9.7 guarantee that supersymmetry is not broken to all orders of perturbation theory. But they do not necessarily guarantee that effects smaller than any power of the couplings will not break supersymmetry. So, if we denote the generic coupling constants by g2, there might be effects of order, say, which break the symmetry. In the context of a theory like the MSSM, supposing that soft breakings are of this order might account for the wide disparity between the weak scale (correlated with the susy-breaking scale) and the Planck or unification scale.

So, one reason why the dynamics of supersymmetric theories is of interest is its role in aiding our understanding of dynamical supersymmetry breaking and perhaps in studying a whole new class of phenomena in nature. But there are yet other reasons to be interested, as was first clearly appreciated by Seiberg. Supersymmetric Lagrangians are far more tightly constrained than ordinary Lagrangians. It is often possible to make strong statements about the dynamics which would be difficult if not impossible for conventional field theories. We will see this includes phenomena such as electric–magnetic duality and confinement.

Criteria for supersymmetry breaking: the Witten index

We will consider a variety of theories, some of them strongly coupled. One might imagine that it is a hard problem to decide whether supersymmetry is broken. Even in weakly coupled theories, one might wonder whether one could establish reliably that supersymmetry is not broken since, unless one has solved the theory exactly, it would seem hard to assert that there is no tiny non-perturbative effect which does not break the symmetry. One thing we will learn in this chapter is that this is not, however, a particularly difficult problem. We will exploit several tools.

Type
Chapter
Information
Supersymmetry and String Theory
Beyond the Standard Model
, pp. 182 - 197
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Supersymmetric dynamics
  • Michael Dine, University of California, Santa Cruz
  • Book: Supersymmetry and String Theory
  • Online publication: 18 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107261426.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Supersymmetric dynamics
  • Michael Dine, University of California, Santa Cruz
  • Book: Supersymmetry and String Theory
  • Online publication: 18 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107261426.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Supersymmetric dynamics
  • Michael Dine, University of California, Santa Cruz
  • Book: Supersymmetry and String Theory
  • Online publication: 18 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107261426.016
Available formats
×