Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-07T20:27:11.619Z Has data issue: false hasContentIssue false

11 - Mechanical switches

from Section III - Alternative field effect devices

Published online by Cambridge University Press:  05 February 2015

Rhesa Nathanael
Affiliation:
University of California, Berkeley
Tsu-Jae King Liu
Affiliation:
University of California, Berkeley
Tsu-Jae King Liu
Affiliation:
University of California, Berkeley
Kelin Kuhn
Affiliation:
Cornell University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
CMOS and Beyond
Logic Switches for Terascale Integrated Circuits
, pp. 263 - 298
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E., & LeBlanc, A. R., “Design of ion-implanted MOSFETs with very small physical dimensions.” Journal of Solid-State Circuits, 9, 256–268 (1974).CrossRefGoogle Scholar
Senturia, S. D., Microsystem Design (Boston, MA: Kluwer Academic, 2001).Google Scholar
Jang, W. W., Lee, J. O., Yoon, J.-B. et al., “Fabrication and characterization of a nanoelectromechanical switch with 15-nm-thick suspension air gap.” Applied Physics Letters, 92, 103110 (2008).CrossRefGoogle Scholar
Lee, J.-O., Kim, M.-W., Ko, S.-D. et al., “3-terminal nanoelectromechanical switching device in insulating liquid media for low voltage operation and reliability improvement.” In Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 227–230 (2009).
Kam, H., Pott, V., Nathanael, R., Jeon, J., Alon, E., & Liu, T.-J. King, “Design and reliability of a micro-relay technology for zero-standby-power digital logic applications.” In Electron Devices Meeting (IEDM), 2009 IEEE International, Technical Digest, pp. 809–812 (2009).
Chong, S., Akarvardar, K., Parsa, R. et al., “Nanoelectromechanical (NEM) relays integrated with CMOS SRAM for improved stability and low leakage.” In Computer-Aided Design, International Conference on, pp. 478–484 (2009).
Czaplewski, D. A., Patrizi, G. A., Kraus, G. M. et al., “A nanomechanical switch for integration with CMOS logic.” Journal of Micromechanics and Microengineering, 19, 085003 (2009).CrossRefGoogle Scholar
Chong, S., Lee, B., Parizi, K. B. et al., “Integration of nanoelectromechanical (NEM) relays with silicon CMOS with functional CMOS-NEM circuit.” In Electron Devices Meeting (IEDM), 2011 IEEE International, Technical Digest, pp. 701–704 (2011).
Parsa, R., Shavezipur, M., Lee, W. S. et al., “Nanoelectromechanical relays with decoupled electrode and suspension.” In Proceedings of the Microelectromechical Systems Conference, pp. 1361–1364 (2011).
Lee, W. S., Chong, S., Parsa, R. et al., “Dual sidewall lateral nanoelectromechanical relays with beam isolation.” In Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, pp. 2606–2609 (2011).
Chong, S., Lee, B., Mitra, S., Howe, R. T., & Wong, H.-S. P., “Integration of nanoelectromechanical relays with silicon nMOS.” IEEE Transactions on Electron Devices, 59(1), 255–258 (2012).CrossRefGoogle Scholar
Nathanael, R., Pott, V., Kam, H., Jeon, J. & Liu, T.-J. K., “4-terminal relay technology for complementary logic.” IEEE International Electron Devices Meeting Technical Digest, pp. 223–226 (2009).
Fedder, G. K., Howe, R. T., Liu, T.-J. King, & Quevy, E., “Technologies for cofabricating MEMS and electronics.” Proceedings of the IEEE, 96, 306–322 (2008).CrossRefGoogle Scholar
Takeuchi, H., Wun, A., Sun, X., Howe, R. T., & Liu, T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices.” IEEE Transactions on Electron Devices, 52, 2081–2086 (2005).CrossRefGoogle Scholar
Khanna, V. K., “Adhesion–delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices.” Journal of Physics D: Applied Physics, 44(3) (2011).CrossRefGoogle Scholar
van Spengen, W. M., Puers, R., & De Wolf, I.. “A physical model to predict stiction in MEMS.” Journal of Micromechanics and Microengineering, 12(5), 702–713 (2002).CrossRefGoogle Scholar
Serry, F. M., Walliser, D., & Maclay, G. J., “The role of the Casimir effect in the static deflection and stiction of membrane strips in MEMS.” Journal of Applied Physics, 84(50), 2501–2506 (1998).CrossRefGoogle Scholar
Resnick, P. J. & Clews, P. J., “Whole wafer critical point drying of MEMS devices.” In Reliability, Testing, and Characterization of MEMS/MOEMS, SPIE Proceedings, vol. 4558, pp. 189–196 (2001).CrossRefGoogle Scholar
Chen, F., Kam, H., Markovic, D., King-Liu, T., Stojanovic, V., & Alon, E., “Integrated circuit design with NEM relays.” IEEE/ACM International Conference on Computer-Aided Design, pp 750–757 (2008).
Holm, R., Electric Contacts: Theory and Applications (Berlin: Springer-Verlag, 1967).CrossRefGoogle Scholar
de Boer, M. P., Knapp, J. A., Mayer, T. M., & Michalske, T. A., “The role of interfacial properties on MEMS performance and reliability.” In Microsystems Metrology and Inspection, SPIE Proceedings, vol. 3825, pp. 2–15 (1999).CrossRef
Kogut, L. & Komvopoulos, K., “Electrical contact resistance theory for conductive rough surfaces.” Journal of Applied Physics, 94, 3153–3162, 2003.CrossRefGoogle Scholar
Rebeiz, G. M., RF MEMS: Theory, Design, and Technology (New York: Wiley, 2003).CrossRefGoogle Scholar
Kam, H., Alon, E., & Liu, T.-J. K., “A predictive contact reliability model for MEM logic switches.” In Electron Devices Meeting, 2010 IEEE International, Technical Digest, pp. 399–402 (2010).
Candler, R., Park, W., Li, H., Yama, G., Partridge, A., Lutz, M., & Kenny, T., “Single wafer encapsulation of MEMS devices.” IEEE Transactions on Advanced Packaging, 26(3), 227–232 (2003).CrossRefGoogle Scholar
Chen, Y., Nathanael, R., Jeon, J., Yaung, J., Hutin, L., & Liu, T.-J. K., “Characterization of contact resistance stability in MEM relays with tungsten electrodes.” IEEE/ASME Journal of Microelectromechanical Systems, 21(3), 511–513 (2012).CrossRefGoogle Scholar
Chen, I.-R., Chen, Y. P., Hutin, L., Pott, V., Nathanael, R., & Liu, T.-J. King, “Stable ruthenium-contact relay technology for low-power logic.” Accepted to The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Barcelona, Spain (2013).Google Scholar
Khanna, V. K., “Adhesion–delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices.” Journal of Physics D: Applied Physics, 44(3) (2011).CrossRefGoogle Scholar
Dauskardt, R. H., Lane, M., Ma, Q., & Krishna, N.. “Adhesion and debonding of multi-layer thin film structures.” Engineering Fracture Mechanics, 61(1), 141–162 (1998).CrossRefGoogle Scholar
Puurunen, R. L., Saarilahti, J., & Kattelus, H., “Implementing ALD Layers in MEMS processing.” Electrochemical Society Transactions, 11(7), 3–14 (2007).Google Scholar
Williams, K., Gupta, K., & Wasilik, M., “Etch rates for micromachining processing – part II.” Journal of Microelectromechanical Systems, 12(6), 761–778 (2003).CrossRefGoogle Scholar
Bakke, T., Schmidt, J., Friedrichs, M., & Völker, B., “Etch stop materials for release by vapor HF etching.” In Proceedings of the 16th Workshop on Workshop on Micromachining, Micromechanics, and Microsystems, pp. 103–106 (2005).
Howe, R. T., Boser, B. E., & Pisano, A. P., “Polysilicon integrated microsystems: technologies and applications.” Sensors and Actuators A: Physical, 56(1), 167–177 (1996).CrossRefGoogle Scholar
Howe, R. T. & Muller, R. S., “Polycrystalline and amorphous silicon micromechanical beams: annealing and mechanical properties.” Sensors and Actuators, 4, 447–454 (1983).CrossRefGoogle Scholar
Biebl, M., Mulhem, G. T. & Howe, R. T., “Low in situ phosphorus doped polysilicon for integrated MEMS.” In Solid State Sensors and Actuators (Transducers 95), Technical Digest, 8th International Conference, vol. I, pp. 198–201 (1995).CrossRefGoogle Scholar
Bagdahn, J., Sharpe, W. N., & Jadaan, O., “Fracture strength of polysilicon at stress concentrations.” Journal of Microelectromechanical Systems, 12(3), 302–312 (2003).CrossRefGoogle Scholar
Kapels, H., Aigner, R., & Binder, J., “Fracture strength and fatigue of polysilicon determined by a novel thermal actuator [MEMS].” IEEE Transactions on Electron Devices, 47(7), 1522–1528 (2000).CrossRefGoogle Scholar
Modlinski, R., Witvrouw, A., Verbist, A., Puers, R., & De Wolf, I., “Mechanical characterization of poly-SiGe layers for CMOS–MEMS integrated application.” Journal of Micromechanics and Microengineering, 20(1) (2009).Google Scholar
Lai, J., “Novel processes and structures for low temperature fabrication of integrated circuit devices.” Ph.D. Dissertation, University of California, Berkeley, CA (2008).
Low, C. W., Liu, T.-J. King, & Howe, R. T., “Characterization of polycrystalline silicon-germanium film deposition for modularly integrated MEMS applications.” Journal of Microelectromechanical Systems, 16(1), 68–77 (2007).CrossRefGoogle Scholar
Pott, V., Kam, H., Jeon, J., & Liu, T.-J. King, “Improvement in mechanical contact reliability with ALD TiO2 coating.” In AVS Conference, Proceedings, pp. 208–209 (2009).
Triani, G., Campbell, J. A., Evans, P. J., Davis, J., Latella, B. A., & Burford, R. P., “Low temperature atomic layer deposition of titania thin films.” Thin Solid Films, 518(12), 3182–3189 (2010).CrossRefGoogle Scholar
Azimirad, R., Naseri, N., Akhavan, O., & Moshfegh, A. Z., “Hydrophilicity variation of WO3 thin films with annealing temperature.” Journal of Physics D: Applied Physics, 40(4), 1134–1137 (2007).CrossRefGoogle Scholar
Miyauchi, M., Nakajima, A., Watanabe, T., & Hashimoto, K., “Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films.” Chemistry of Materials, 14(6), 2812–2816 (2002).CrossRefGoogle Scholar
Nathanael, R., Jeon, J., Chen, I.-R. et al., “Multi-input/multi-output relay design for more compact and versatile implementation of digital logic with zero leakage.” Presented at the 19th International Symposium on VLSI Technology, Systems and Applications (2012).
Chen, I.-R., Hutin, L., Park, C. et al., “Scaled micro-relay structure with low strain gradient for reduced operating voltage.” Presented at the 221st ECS Meeting (2012).
Spencer, M., Chen, F., Wang, C. et al., “Demonstration of integrated micro-electro-mechanical relay circuits for VLSI applications.” IEEE Journal of Solid-State Circuits, 46(1), 308–320 (2011).CrossRefGoogle Scholar
Hirata, A., Machida, K., Kyuragi, H., & Maeda, M., “A electrostatic micromechanical switch for logic operation in multichip modules on Si.” Sensors and Actuators A, 80, 119–125 (2000).CrossRefGoogle Scholar
Akarvardar, K., Elata, D., Parsa, R. et al., “Design considerations for complementary nanoelectromechanical logic gates.” In Electron Devices Meeting, 2007 (IEDM 2007), IEEE International, pp. 299–302 (2007).
Nathanael, R., Pott, V., Kam, H., Jeon, J., Alon, E., & Liu, T.-J. K., “Four-terminal-relay body-biasing schemes for complementary logic circuits.” IEEE Electron Device Letters, 31(8), 890–892 (2010).CrossRefGoogle Scholar
Rabaey, J. M., Chandrakasan, A. P., & Nikolic, B., Digital Integrated Circuits (Englewood Cliffs, NJ: Prentice-Hall, 2003).Google Scholar
Jeon, J., Hutin, L., Jevtic, R. et al., “Multi-input relay design for more compact implementation of digital logic circuits.” IEEE Electron Device Letters, 33(2), 281–283 (2012).CrossRefGoogle Scholar
Pott, V., Kam, H., Nathanael, R., Jeon, J., Alon, E., & Liu, T.-J. K., “Mechanical computing redux: relays for integrated circuit applications.” Proceedings of the IEEE, 98(12), 2076–2094 (2010).CrossRefGoogle Scholar
Kwon, W., Jeon, J., Hutin, L., & Liu, T.-J. K., “Electromechanical diode cell for cross-point nonvolatile memory arrays.” IEEE Electron Device Letters, 33(2), 131–133 (2012).CrossRefGoogle Scholar
Lee, J. O., Song, Y.-H., Kim, M.-W. et al., “A sub-1-volt nanoelectromechanical switching device.” Nature Nanotechnology, 8, 36–40 (2013).CrossRefGoogle ScholarPubMed
Hung, L.-W. & Nguyen, C. T.-C., “Silicide-based release of high aspect-ratio microstructures.” In Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on, pp. 120–123 (2010).
Liu, T.-J. K., Jeon, J., Nathanael, R., Kam, H., Pott, V., & Alon, E., “Prospects for MEM logic switch technology.” In Electron Devices Meeting (IEDM), 2011 IEEE International, Technical Digest, pp. 424–427 (2010).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×