Skip to main content Accessibility help
×
Hostname: page-component-6d856f89d9-5pczc Total loading time: 0 Render date: 2024-07-16T04:43:10.664Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 June 2017

Geoffrey K. Vallis
Affiliation:
University of Exeter
Get access
Type
Chapter
Information
Atmospheric and Oceanic Fluid Dynamics
Fundamentals and Large-Scale Circulation
, pp. 909 - 935
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarbanel, H. D. I. & Young, W. R., Eds., 1987. General Circulation of the Ocean. Springer-Verlag, 291 pp.
Abbe, C., 1901. The physical basis of long-range weather forecasts. Mon. Wea. Rev, 29, 551–561.Google Scholar
Ablowitz, M. J., 2011. Nonlinear dispersive waves: asymptotic analysis and solitons. Vol. 47, Cambridge University Press, 311 pp.
Abramowitz, M. & Stegun, I. A., 1965. Handbook of Mathematical Functions. Dover Publications, 1046 pp.
Allen, J. S., 1993. Iterated geostrophic intermediate models. J. Phys. Oceanogr., 23, 2447–2461.Google Scholar
Allen, J. S., Barth, J. A. & Newberger, P. A., 1990a. On intermediate models for barotropic continental shelf and slope flow fields. Part I: Formulation and comparison of exact solutions. J. Phys. Oceanogr., 20, 1017–1042.Google Scholar
Allen, J. S., Barth, J. A. & Newberger, P. A., 1990b. On intermediate models for barotropic continental shelf and slope flow fields. Part II: Comparison of numerical model solutions in doubly periodic domains. J. Phys. Oceanogr., 20, 1043–1082.Google Scholar
Allen, J. S., Holm, D. D. & Newberger, P. A., 2002. Extended-geostrophic Euler–Poincaré models for mesoscale oceanographic flow. In J, Norbury & I, Roulstone, Eds., Large-scale Atmosphere–Ocean Dynamics I. Cambridge University Press.
Ambaum, M. H. P., 2010. Thermal Physics of the Atmosphere. Wiley, 239 pp.
Andrews, D. G., 1987. On the interpretation of the Eliassen–Palm flux divergence. Quart. J. Roy. Meteor. Soc., 113, 323–338.Google Scholar
Andrews, D. G., 2010. An Introduction to Atmospheric Physics. Cambridge University Press, 237 pp.
Andrews, D. G., Holton, J. R. & Leovy, C. B., 1987. Middle Atmosphere Dynamics. Academic Press, 489 pp.
Andrews, D. G. & McIntyre, M. E., 1976. Planetary waves in horizontal and vertical shear: the generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031–2048.Google Scholar
Andrews, D. G. & McIntyre, M. E., 1978. Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175–185.Google Scholar
Angell, J. K. & Korshover, J., 1964. Quasi-biennial variations in temperature, total ozone, and tropopause height. J. Atmos. Sci., 21, 479–492.Google Scholar
Arakawa, A., 2004. The cumulus parameterization problem: Past, present, and future. J. Climate., 17, 13, 2493–2525.Google Scholar
Arakawa, A. & Schubert, W. H., 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, part i. J. Atmos. Sci., 31, 3, 674–701.Google Scholar
Arbic, B. K., Flierl, G. R. & Scott, R. B., 2007. Cascade inequalities for forced-dissipated geostrophic turbulence. J. Phys. Oceanogr., 37, 1470–1487.Google Scholar
Arnold, V. I., 1965. Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Dokl. Akad. Nauk SSSR., 162, 975–978. Engl. transl.: Sov. Math..6, 773–777 (1965).Google Scholar
Arnold, V. I., 1966. On an a priori estimate in the theory of hydrodynamic stability. Izv. Vyssh. Uchebn. Zaved. Math., 54, 3–5. Engl. transl.: Am Mat. Soc. Transl. Ser.,.2, 79, 267–289 (1969).Google Scholar
Assmann, R., 1902. & Uuml;ber die Existenz eines wärmeren Luftstromes in der Höhe von 10 bis 15 km. (On the existence of a warmer airflow at heights from 10 to 15 km). Sitzber. Königl. Preuss. Akad. Wiss. Berlin., 24, 495–504.Google Scholar
Aubin, D. & Dahan Dalmedico, A., 2002. Writing the history of dynamical systems and chaos: longue durée. and revolution, disciplines and cultures. Historia Mathematica., 29, 1–67.Google Scholar
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K. et al., 2001. The quasi-biennial oscillation. Rev. Geophys., 39, 179–229.Google Scholar
Ball, J. M. & James, R. D., 2002. The scientific life and influence of Clifford Ambrose Truesdell III. Arch. Rational Mech. Anal., 161, 1–26.Google Scholar
Bannon, P. R., 1995. Potential vorticity conservation, hydrostatic adjustment, and the anelastic approximation. J. Atmos. Sci., 52, 2301–2312.Google Scholar
Bannon, P. R., 1996. On the anelastic equation for a compressible atmosphere. J. Atmos. Sci., 53, 3618–3628.Google Scholar
Bartello, P. & Warn, T., 1996. Self-similarity of decaying two-dimensional turbulence. J. Fluid Mech., 326, 357–372.Google Scholar
Batchelor, G. K., 1953a. The conditions for dynamical similarity of motions of a frictionless perfect-gas atmosphere. Quart. J. Roy. Meteor. Soc., 79, 224–235.Google Scholar
Batchelor, G. K., 1953b. The Theory of Homogeneous Turbulence. Cambridge University Press, 197 pp.
Batchelor, G. K., 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1: General discussion and the case of small conductivity. J. Fluid Mech., 5, 113–133.Google Scholar
Batchelor, G. K., 1967. An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.
Batchelor, G. K., 1969. Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl., 12, II–233—II–239.Google Scholar
Battisti, D. S., 1988. Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere– ocean model. J. Atmos. Sci., 45, 2889–2919.Google Scholar
Baumert, H. Z., Simpson, J. & Sündermann, J., Eds., 2005. Marine Turbulence: Theories, Observations an. Models. Cambridge University Press, 630 pp.
Bell, E. T., 1937. Men of Mathematics. Simon & Schuster, 590 pp.
Bell, M. J., 2015a. Meridional overturning circulations driven by surface wind and buoyancy forcing. J. Phys. Oceanogr., 45, 2701–2714.Google Scholar
Bell, M. J., 2015b. Water mass transformations driven by Ekman upwelling and surface warming in subpolar gyres. J. Phys. Oceanogr., 45, 2356–2380.Google Scholar
Bender, C. M. & Orszag, S. A., 1978. Advanced Mathematical Methods for Scientists and Engineers. McGraw- Hill, 593 pp.
Berrisford, P., Marshall, J. C. & White, A. A., 1993. Quasi-geostrophic potential vorticity in isentropic coordinates. Quart. J. Roy. Meteor. Soc., 119, 778–782.Google Scholar
Betts, A. K., 1973. Non-precipitating convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99, 178–196.Google Scholar
Betts, A. K., 1986. A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–691.Google Scholar
Betts, A. K. & Miller, M. J., 1986. A new convective adjustment scheme. Part II: Single column test using GATE wave, BOMEX, ATEX and Arctic air mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693–709.Google Scholar
Birner, T., 2006. Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111, D04104.Google Scholar
Birner, T., Dörnbrack, A. & Schumann, U., 2002. How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29, 1700.Google Scholar
Bjerknes, J., 1919. On the structure of moving cyclones. Geofys. Publ., 1 (2), 1–8.Google Scholar
Bjerknes, J., 1937. Die Theorie der aussertropischen Zyklonenbildung (The theory of extra-tropical cyclone formation). Meteor. Zeitschr., 12, 460–466.Google Scholar
Bjerknes, J., 1959. Atlantic air–sea interaction. In Advances in Geophysics., Vol. 10, pp. 1–82. Academic Press.Google Scholar
Bjerknes, J., 1969. Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172.Google Scholar
Bjerknes, V., 1898a. Über die Bildung von Cirkulationsbewegungen und Wirbeln in reibunglosen Flüssigkeiten (On the generation of circulation and vortices in inviscid fluids). Skr. Nor. Vidensk.-Akad. 1: Mat.-Naturvidensk. Kl., 5, 3–29.Google Scholar
Bjerknes, V., 1898b. Über einen hydrodynamischen Fundamentalsatz und seine Anwendung besonders auf die Mechanik der Atmosphäre und des Weltmeeres (On a fundamental principle of hydrodynamics and its application particularly to the mechanics of the atmosphere and the world's oceans). Kongl. Sven. Vetensk. Akad. Handlingar., 31, 1–35.Google Scholar
Bjerknes, V., 1902. Cirkulation relativ zu der Erde (Circulation relative to the Earth). Meteor. Z., 37, 97–108.Google Scholar
Bjerknes, V., 1904. Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physic (The problem of weather forecasting as a problem in mathematics and physics). Meteor. Z., January, 1–7. Engl. transl.: Y, Mintz, in Shapiro and Grønas (1999), pp. 1–7.
Blumen, W., 1968. On the stability of quasi-geostrophic flow. J. Atmos. Sci., 25, 929–933.Google Scholar
Boccaletti, G., Pacanowski, R. C., Philander, S. G. H. & Fedorov, A. V., 2004. The thermal structure of the upper ocean. J. Phys. Oceanogr., 34, 888–902.Google Scholar
Boer, G. J. & Shepherd, T. G., 1983. Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164–184.Google Scholar
Boffetta, G. & Ecke, R. E., 2012. Two-dimensional turbulence. Ann. Rev. Fluid Mech., 44, 427–451.Google Scholar
Bohren, C. F. & Albrecht, B. A., 1998. Atmospheric thermodynamics. Oxford University Press, 416 pp.
Bolton, D., 1980. The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046–1053.Google Scholar
Booker, J. R. & Bretherton, F. P., 1967. The critical layer for internal gravity waves in a shear flow. J. Flui. Mech., 27, 513–539.Google Scholar
Boussinesq, J., 1903. Théorie analytique de la chaleur (Analytic theory of heat). Tome, Paris, Gauthier-Villars., II, 170–172.
Box, G. E. P., 1976. Science and statistics. J. Am. Stat. Assoc., 71, 791–799.Google Scholar
Box, G. E. P., 1979. Robustness in the strategy of scientific model building. In R. L, Launer & G. N., Wilkinson, Eds., Robustness in Statistic., pp. 201–236. Academic Press.
Boyd, J. P., 1976. The noninteraction of waves with the zonally averaged flow on a spherical Earth and the interrelationships of eddy fluxes of energy, heat and momentum. J. Atmos. Sci., 33, 2285–2291.Google Scholar
Boyd, J. P., 1978. The effects of latitudinal shear on equatorial waves. Part 1. Theory and method. J. Atmos. Sci., 35, 2236–2258.Google Scholar
Boyd, J. P., 1980. The nonlinear equatorial Kelvin wave. J. Phys. Oceanogr., 10, 1–11.Google Scholar
Branscome, L. E., 1983. The Charney baroclinic stability problem: approximate solutions and modal structures. J. Atmos. Sci., 40, 1393–1409.Google Scholar
Bretherton, C. S. & Schär, C., 1993. Flux of potential vorticity substance: a simple derivation and a uniqueness property. J. Atmos. Sci., 50, 1834–1836.Google Scholar
Bretherton, C. S. & Smolarkiewicz, P. K., 1989. Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740–759.Google Scholar
Bretherton, C. S. & Sobel, A. H., 2002. A simple model of a convectively coupled Walker circulation using the weak temperature gradient approximation. . Climate., 15, 2907–2920.Google Scholar
Bretherton, C. S. & Sobel, A. H., 2003. The Gill model and the weak temperature gradient approximation. J. Atmos. Sci., 60, 451–460.Google Scholar
Bretherton, F. P., 1964. Low frequency oscillations trapped near the equator. Tellus., 16, 181–185.Google Scholar
Bretherton, F. P., 1966a. Baroclinic instability and the short wavelength cut-off in terms of potential vorticity. Quart. J. Roy. Meteor. Soc., 92, 335–345.Google Scholar
Bretherton, F. P., 1966b. Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325–334.Google Scholar
Bretherton, F. P., 1969. Momentum transport by gravity waves. Quart. J. Roy. Meteor. Soc., 95, 213–243.Google Scholar
Brewer, A. W., 1949. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 251–363.Google Scholar
Brillouin, L., 1926. La mécanique ondulatoire de Schrödinger; une méthode générale de resolution par approximations successives (The wave mechanics of Schrödinger: a general method of solution by successive approximation). Comptes Rendus., 183, 24–26.Google Scholar
Browning, G., Kreiss, H. & Schubert, W., 2000. The role of gravity waves in slowly varying in time tropospheric motions near the equator. J. Atmos. Sci., 57, 4008–4019.Google Scholar
Bryan, F., 1986. High-latitude salinity effects and interhemispheric thermohaline circulations. Nature., 323, 301–304.Google Scholar
Bryden, H. & Brady, E. C., 1985. Diagnostic study of the three-dimensional circulation of the upper equatorialPacific Ocean. J. Phys. Oceanogr., 15, 1255–1273.Google Scholar
Buchanan, J. Y., 1886. On the similarities in the physical geography of the great oceans. Proc. Roy. Geogr. Soc., 8, 753–770.Google Scholar
Bühler, O., 2009. Waves and Mean Flows. Cambridge University Press, 370 pp.
Burger, A., 1958. Scale considerations of planetary motions of the atmosphere. Tellus., 10, 195–205.Google Scholar
Burke, A., Stewart, A. L., Adkins, J. F., Ferrari, R. et al., 2015. The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanog., 30, 1021–1039.Google Scholar
Caballero, R., 2014. Physics of the Atmosphere. IOP Publishing, 132 pp.
Callen, H. B., 1985. Thermodynamics and an Introduction to Themostatistics. John Wiley & Sons, 493 pp.
Cane, M. A., 1979a. The response of an equatorial ocean to simple wind stress patterns: I. Model formulation and analytic results. J. Mar. Res., 37, 232–252.Google Scholar
Cane, M. A., 1979b. The response of an equatorial ocean to simple wind stress patterns: II. Numerical results. J. Mar. Res., 37, 355–398.Google Scholar
Cane, M. A. & Zebiak, S. E., 1985. A theory for El Niño and the Southern Oscillation. Science., 228, 1084–1087.Google Scholar
Carillo, C. N., 1892. Desertacion sobre las corrientes y estudios de la corriente Peruana de Humboldt. (Dissertation on currents and studies of the Peruvian Humboldt current). Bol. Soc. Geogr. Lima., 11, 72–110.Google Scholar
Carlini, F., 1837. Ricerche sulla convergenza della serie che serva alla soluzione del problema di Keplero (Research on the convergence of series for the solution of Kepler's problem). Milan.
Cessi, P., 2001. Thermohaline circulation variability. In Conceptual Models of the Climate. Woods Hole Program in Geophysical Fluid Dynamics.(2001). Also available from http://gfd.whoi.edu/proceedings/2001/PDFvol2001.html.
Cessi, P. & Fantini, M., 2004. The eddy-driven thermocline. J. Phys. Oceanogr., 34, 2642–2658.Google Scholar
Cessi, P. & Young, W. R., 1992. Multiple equilibria in two-dimensional thermohaline circulation. J. Flui. Mech., 241, 291–309.Google Scholar
Chai, J., 2016. Understanding geostrophic turbulence in a hierarchy of models. Ph. D thesis, Princeton University.
Chandrasekhar, S., 1961. Hydrodynamic and Hydromagnetic Stability. Oxford University Press, 652 pp. Reprinted by Dover Publications, 1981.
Chang, E. K. M. & Orlanski, I., 1994. On energy flux and group velocity of waves in baroclinic flows. J. Atmos. Sci., 51, 3823–3828.Google Scholar
Chang, P., Ji, L., Li, H. & Flügel, M., 1996. Chaotic dynamics versus stochastic processes in El Niño–Southern Oscillation in coupled ocean–atmosphere models. Physica D., 98, 301–320.Google Scholar
Chapman, D. C., Malanotte-Rizzoli, P. & Hendershott, M., 1989. Wave motions in the ocean. Unpublished notes based on lectures by Myrl Hendershott.
Chapman, S. & Lindzen, R. S., 1970. Atmospheric Tides. Gordon and Breach, 200 pp.
Charlton, A. J. & Polvani, L. M., 2007. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate., 20, 449–469.Google Scholar
Charlton, A. J., Polvani, L. M., Perlwitz, J., Sassi, F. et al., 2007. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate., 20, 470–488.Google Scholar
Charney, J. G., 1947. The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135–162.Google Scholar
Charney, J. G., 1948. On the scale of atmospheric motion. Geofys. Publ. Oslo., 17(2), 1–17.Google Scholar
Charney, J. G., 1955. The Gulf Stream as an inertial boundary layer. Proc. Nat. Acad. Sci., 41, 731–740.Google Scholar
Charney, J. G., 1960. Non-linear theory of a wind-driven homogeneous layer near the equator. Deep-Se. Res., 6, 303–310.Google Scholar
Charney, J. G., 1963. A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607–609.Google Scholar
Charney, J. G., 1971. Geostrophic turbulence. J. Atmos. Sci., 28, 1087–1095.Google Scholar
Charney, J. G. & Drazin, P. G., 1961. Propagation of planetary scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83–109.Google Scholar
Charney, J. G. & Eliassen, A., 1949. A numerical method for predicting the perturbations of the mid-latitude westerlies. Tellus., 1, 3 8–54.Google Scholar
Charney, J. G. & Eliassen, A., 1964. On the growth of the hurricane depression. J. Atmos. Sci., 21, 68–75.Google Scholar
Charney, J. G. & Stern, M. E., 1962. On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159–172.Google Scholar
Charnock, H., Green, J., Ludlam, F., Scorer, R. & Sheppard, P., 1966. Dr. E. T. Eady, B. A. (Obituary). Quart. J. Roy. Meteor. Soc., 92, 591–592.
Chasnov, J. R., 1991. Simulation of the inertial-conductive subrange. Phys. Fluids., 3, 1164–1168.Google Scholar
Chelton, D. B., de Szoeke, R. A., Schlax, M. G., Naggar, K. E. & Siwertz, N., 1998. Geographical variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433–460.Google Scholar
Christiansen, B., 1999. Stratospheric vacillations in a general circulation model. J. Atmos. Sci., 56, 1858–1872.Google Scholar
Christiansen, B., 2000. Chaos, quasiperiodicity, and interannual variability: studies of a stratospheric vacillation model. J. Atmos. Sci., 57, 3161–3173.Google Scholar
Clarke, A. J., 2008. An Introduction to the Dynamics of El Niño and the Southern Oscillation. Elsevier, 308 pp.
Clarke, A. J., Van Gorder, S. & Colantuono, G., 2007. Wind stress curl and enso discharge/recharge in the equatorial Pacific. J. Phys. Oceanogr., 37, 1077–1091.Google Scholar
Colin de Verdière, A., 1980. Quasi-geostrophic turbulence in a rotating homogeneous fluid. Geophys. Astrophys. Fluid Dyn., 15, 213–251.Google Scholar
Colin de Verdière, A., 1989. On the interaction of wind and buoyancy driven gyres. J. Mar. Res., 47, 595–633.Google Scholar
Conkright, M. E., Antonov, J., Baranova, O., Boyer, T. P. et al., 2001. World ocean database 2001, vol. 1. In S, Levitus, Ed., NOAA Atlas NESDIS 42., pp. 167. US Government Printing Office, Washington DC.
Coriolis, G. G., 1832. Mémoire sur le principe des forces vives dans les mouvements relatifs des machines (On the principle of kinetic energy in the relative movement of machines). J. Ec. Polytech., 13, 268–301.Google Scholar
Coriolis, G. G., 1835. Mémoire sur les équations du mouvement relatif des systèmes de corps (On the equations of relative motion of a system of bodies). J. Ec. Polytech., 15, 142–154.Google Scholar
Corrsin, S., 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys., 22, 469–473. Erratum: J. Appl. Phys..22, 1292, (1951).Google Scholar
Craig, G. C. & Gray, S. L., 1996. CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 3528–3540.Google Scholar
Cressman, G. P., 1996. The origin and rise of numerical weather prediction. In J. R, Fleming, Ed., Historica. Essays on Meteorology 1919–199., pp. 617. American Meteorological Society.
Cromwell, T., 1953. Circulation in a meridional plane in the central equatorial Pacific. J. Mar. Res., 12, 196–213.Google Scholar
Da Vinci, L., 1500. The notebooks of Leonardo da Vinci,.Vol. 2. J. P, Richter, Ed. Dover Publications, 1970.
Danielsen, E. F., 1990. In defense of Ertel's potential vorticity and its general applicability as a meteorological tracer. J. Atmos. Sci., 47, 2353–2361.Google Scholar
Danilov, S. & Gryanik, V., 2002. Rhines scale and spectra of the plane turbulence with bottom drag. Phys. Rev. E., 65, 067301–1–067301–3.Google Scholar
Danilov, S. & Gurarie, D., 2001. Quasi-two-dimensional turbulence. Usp. Fiz. Nauk., 170, 921–968.Google Scholar
Davidson, P., 2015. Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, 688 pp.
Davies-Jones, R., 2003. Comments on “A generalization of Bernoulli's theorem”. J. Atmos. Sci., 60, 2039–2041.Google Scholar
Davis, R. E., de Szoeke, R., Halpern, D. & Niiler, P., 1981. Variability in the upper ocean during MILE. Part I: The heat and momentum balances. Deep-Sea Res., 28, 1427–1452.Google Scholar
De Morgan, A., 1872. A Budget of Paradoxes. Thoemmmes Continuum, 814 pp.
de Szoeke, R. & Bennett, A. F., 1993. Microstructure fluxes across density surfaces. J. Phys. Oceanogr., 24, 2254–2264.Google Scholar
de Szoeke, R. A., 2000. Equations of motion using thermodynamic coordinates. J. Phys. Oceanogr., 30, 2814–2829.Google Scholar
de Szoeke, R. A., 2004. An effect of the thermobaric nonlinearity of the equation of state: A mechanism for sustaining solitary Rossby waves. J. Phys. Oceanogr., 34, 2042–2056.Google Scholar
Dee, D., Uppala, S., Simmons, A., Berrisford, P. et al., 2011. The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.Google Scholar
Defant, A., 1921. Die Zirkulation der Atmosphäre in den gemäßigten Breiten der Erde. Grundzüge einer Theorie der Klimaschwankungen (The circulation of the atmosphere in the Earth's mid-latitudes. Basic features of a theory of climate fluctuations). Geograf. Ann., 3, 209–266.Google Scholar
Dellar, P. J., 2011. Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton's principle on a sphere. J. Fluid Mech., 674, 174–195.Google Scholar
Dewar, W. K. & Huang, R. X., 1995. Fluid flow in loops driven by freshwater and heat fluxes. J. Fluid Mech., 297, 153–191.Google Scholar
Dewar, W. K., Samelson, R. S. & Vallis, G. K., 2005. The ventilated pool: a model of subtropical mode water. J. Phys. Oceanogr., 35, 137–150.Google Scholar
Dias, J. & Kiladis, G. N., 2014. Influence of the basic state zonal flow on convectively coupled equatorial waves. Geophys. Res. Lett., 41, 6904–6913.Google Scholar
Dickinson, R. E., 1968. Planetary Rossby waves propagating vertically through weak westerly wind wave guides. J. Atmos. Sci., 25, 984–1002.Google Scholar
Dickinson, R. E., 1969. Theory of planetary wave–zonal flow interaction. J. Atmos. Sci., 26, 73–81.Google Scholar
Dickinson, R. E., 1980. Planetary waves: theory and observation. In Orographic Effects on Planetary Flows., Number 23 in GARP Publication Series. World Meteorological Organization.
Dijkstra, H. A., 2008. Dynamical Oceanography. Springer, 407 pp.
Dima, I. & Wallace, J. M., 2003. On the seasonality of the Hadley Cell. J. Atmos. Sci., 60, 1522–1527.Google Scholar
Dobson, G. M. B., 1956. Origin and distribution of the polyatomic molecules in the atmosphere. Proc. Roy. Soc. Lond. A., 236, 187–193.Google Scholar
Döös, K. & Coward, A., 1997. The Southern Ocean as the major upwelling zone of the North Atlantic. Int. WOCE Newsletter.27, 3–4.Google Scholar
Drazin, P. G. & Reid, W. H., 1981. Hydrodynamic Stability. Cambridge University Press, 527 pp.
Drijfhout, S. S. & Hazeleger, W., 2001. Eddy mixing of potential vorticity versus temperature in an isopycnic ocean model. J. Phys. Oceanogr., 31, 481–505.Google Scholar
Dritschel, D. & McIntyre, M., 2008. Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855–874.Google Scholar
Dunkerton, T., Hsu, C.-P. & McIntrye, M. E., 1981. Some Eulerian and Lagrangian diagnostics for a model stratosphere warming. JAS, 38, 819–843.Google Scholar
Dunkerton, T. J., 1980. A Lagrangian-mean theory of wave, mean-flow interaction with applications to non-acceleration and its breakdown. Rev. Geophys. Space Phys., 18, 387–400.Google Scholar
Dunkerton, T. J., 1982. Shear zone asymmetry in the observed and simulated quasi-biennial oscillation. J. Atmos. Sci., 38, 461–469.Google Scholar
Dunkerton, T. J., 1997. The role of gravity waves in the quasi-biennial oscillation. JGR, 102, 26053–26076.Google Scholar
Dunkerton, T. J., Delisi, D. P. & Baldwin, M. P., 1988. Distribution of major stratospheric warmings in relation to the quasi-biennial oscillation. Geophys. Res. Lett., 115, 136–139.Google Scholar
Durran, D. R., 1989. Improving the anelastic approximation. J. Atmos. Sci., 46, 1453–1461.Google Scholar
Durran, D. R., 1990. Mountain waves and downslope winds. Meteor. Monogr., 23, 59–81.Google Scholar
Durran, D. R., 1993. Is the Coriolis force really responsible for the inertial oscillations? Bull. Am. Meteor. Soc., 74, 2179–2184.Google Scholar
Durran, D. R., 2015. Lee waves and mountain waves. Encycl. Atmos. Sci.,.2nd edn, 4, 95–102.Google Scholar
Durst, C. S. & Sutcliffe, R. C., 1938. The effect of vertical motion on the “geostrophic departure” of the wind. Quart. J. Roy. Meteor. Soc., 64, 240.Google Scholar
Dutton, J. A., 1986. The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion. Dover Publications, 617 pp.
Eady, E. T., 1949. Long waves and cyclone waves. Tellus., 1, 33–52.Google Scholar
Eady, E. T., 1950. The cause of the general circulation of the atmosphere. In Cent. Proc. Roy. Meteor. Soc. (1950), pp. 156–172.Google Scholar
Eady, E. T., 1954. The maintenance of the mean zonal surface currents. Proc. Toronto Meteor. Conf. 1953., 138, 124–128. Royal Meteorological Society.Google Scholar
Eady, E. T., 1957. The general circulation of the atmosphere and oceans. In D. R, Bates, Ed., The Earth an. its Atmosphere., pp. 130–151. New York, Basic Books.
Eady, E. T. & Sawyer, J. S., 1951. Dynamics of flow patterns in extra-tropical regions. Quart. J. Roy. Meteor. Soc., 77, 531–551.Google Scholar
Ebdon, R. A., 1960. Notes on the wind flow at 50 mb in tropical and subtropical regions in January 1957 and in 1960. Quart. J. Roy. Meteor. Soc., 86, 540–542.Google Scholar
Eden, C. & Willebrand, J., 1999. Neutral density revisited. Deep Sea Res., Part II., 46, 33–54.Google Scholar
Edmon, H. J., Hoskins, B. J. & McIntyre, M. E., 1980. Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 2600–2616.Google Scholar
Egger, J., 1976. Linear response of a two-level primitive equation model to forcing by topography. Mon. Wea. Rev., 104, 351–364.Google Scholar
Ekman, V. W., 1905. On the influence of the Earth's rotation on ocean currents. Arch. Math. Astron. Phys., 2, 1–52.Google Scholar
Eliassen, A. & Palm, E., 1961. On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 1–23.Google Scholar
Eluszkiewicz, J., Crisp, D., Grainger, R. G., Lambert, A. et al., 1997. Sensitivity of the residual circulation diagnosed from the UARS data to the uncertainties in the input fields and to the inclusion of aerosols. J. Atmos. Sci., 54, 1739–1757.Google Scholar
Emanuel, K., 2007. Quasi-equilibrium dynamics of the tropical atmosphere. In T, Schneider & A, Sobel, Eds., The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges., pp. 143–185. Princeton University Press.
Emanuel, K. A., 1987. An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 2324–2340.Google Scholar
Emanuel, K. A., 1994. Atmospheric Convection. Oxford University Press, 580 pp.
Emanuel, K. A., 2011. Edward Norton Lorenz, 1917–2008. In Biog. Memoirs., pp. 1–28. Nat'l. Acad. Sci.
Emanuel, K. A., Neelin, J. D. & Bretherton, C. S., 1994. On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 1111–1143.Google Scholar
Er-El, J. & Peskin, R., 1981. Relative diffusion of constant-level balloons in the Southern Hemisphere. J. Atmos. Sci., 38, 2264–2274.Google Scholar
Ertel, H., 1942a. Ein neuer hydrodynamischer Wirbelsatz (A new hydrodynamic eddy theorem). Meteorol. Z., 59, 277–281.Google Scholar
Ertel, H., 1942b. Über des Verhältnis des neuen hydrodynamischen Wirbelsatzes zum Zirculationssatz von V. Bjerknes (On the relationship of the new hydrodynamic eddy theorem to the circulation theorem of V. Bjerknes). Meteorol. Z., 59, 385–387.Google Scholar
Ertel, H. & Rossby, C.-G., 1949a. Ein neuer Erhaltungs-satz der Hydrodynamik (A new conservation theorem of hydrodynamics). Sitzungsber. d. Deutschen Akad. Wissenschaften Berlin., 1, 3–11.Google Scholar
Ertel, H. & Rossby, C.-G., 1949b. A new conservation theorem of hydrodynamics. Geofis. Pura Appl., 14, 189–193.Google Scholar
Fang, M. & Tung, K. K., 1996. A simple model of nonlinear Hadley circulation with an ITCZ: analytic and numerical solutions. J. Atmos. Sci., 53, 1241–1261.Google Scholar
Fang, M. & Tung, K. K., 1999. Time-dependent nonlinear Hadley circulation. J. Atmos. Sci., 56, 1797–1807.Google Scholar
Farrell, B., 1984. Modal and non-modal baroclinic waves. J. Atmos. Sci., 41, 668–673.Google Scholar
Farrell, B. & Ioannou, P. J., 1995. Stochastic dynamics of the midlatitude atmospheric jet. J. Atmos. Sci., 52, 1642–1656.Google Scholar
Farrell, B. F. & Ioannou, P. J., 1996. Generalized stability theory. Part I: autonomous operators. J. Atmos. Sci., 53, 2025–2040.Google Scholar
Farrell, B. F. & Ioannou, P. J., 2008. Formation of jets by baroclinic turbulence. J. Atmos. Sci., 65, 3353–3375.Google Scholar
Feistel, R., 2008. A Gibbs function for seawater thermodynamics for aˆ6° C to 80° C and salinity up to 120 g kg-1. Deep-Sea Res., 55, 1639–1671.Google Scholar
Feistel, R., Wright, D., Kretzschmar, H.-J., Hagen, E. et al., 2010. Thermodynamic properties of sea air. Oce. Sci., 6, 91–141.Google Scholar
Ferrari, R., Griffies, S. M., Nurser, G. & Vallis, G. K., 2010. A boundary-value problem for the parameterized mesoscale eddy transport. Oce. Model., 32, 143–156.Google Scholar
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A. et al., 2014. Antarctic sea ice control on ocean circulation in present and glacial climates. Proceedings of the National Academy of Sciences., 111, 8753–8758.Google Scholar
Ferrel, W., 1856a. An essay on the winds and currents of the ocean. Nashville J. Med. & Surg., 11, 287–301.Google Scholar
Ferrel, W., 1856b. The problem of the tides. Astron. J., 4, 173–176.Google Scholar
Ferrel, W., 1858. The influence of the Earth's rotation upon the relative motion of bodies near its surface. Astron. J., V, No. 13 (109), 97–100.Google Scholar
Fjørtoft, R., 1950. Application of integral theorems in deriving criteria for laminar flows and for the baroclinic circular vortex. Geophys. Publ., 17, 1–52.Google Scholar
Fjørtoft, R., 1953. On the changes in the spectral distribution of kinetic energy for two-dimensional nondivergent flow. Tellus., 5, 225–230.Google Scholar
Fleming, E. L., Chandra, S., Schoeberl, M. R. & Barnett, J. J., 1988. Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0-120 km. Technical report, NASA/Goddard Space Flight Center, Greenbelt, MD. NASA Tech. Memo. 100697.
Fofonoff, N. P., 1954. Steady flow in a frictionless homogeneous ocean. J. Mar. Res., 13, 254–262.Google Scholar
Gage, K. S. & Nastrom, G. D., 1986. Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP. J. Atmos. Sci., 43, 729–740.Google Scholar
Galanti, E. & Tziperman, E., 2000. ENSO's phase locking to the seasonal cycle in the fast-SST, fast-wave, and mixed-mode regimes. J. Atmos. Sci., 57, 2936–2950.Google Scholar
Galperin, B. & Read, P. L., Eds., 2017. Zonal Jets: Phenomenology, Genesis, Physics. Cambridge University Press, 431 pp.
Galperin, B., Sukoriansky, S. & Dikovskaya, N., 2010. Geophysical flows with anisotropic turbulence and dispersive waves: flows with a ö-effect. Ocean Dynamics., 60, 427–441.Google Scholar
Galperin, B., Sukoriansky, S., Dikovskaya, N., Read, P. et al., 2006. Anisotropic turbulence and zonal jets in rotating flows with a ö-effect. Nonlinear Proc. Geophys., 13, 83–98.Google Scholar
Garcia, R. R., 1987. On the mean meridional circulation of the stratosphere. J. Atmos. Sci., 44, 2599–2609.Google Scholar
Fofonoff, N. P., 1959. Interpretation of oceanographic measurements – thermodynamics. In Physical an. Chemical Properties of Sea Water., Vol. 600. Nat. Acad. Sci., Nat. Res. Counc., Publ.Google Scholar
Fofonoff, N. P. & Montgomery, R. B., 1955. The equatorial undercurrent in the light of the vorticity equation. Tellus., 7, 518–521.Google Scholar
Fox-Kemper, B. & Pedlosky, J., 2004. Wind-driven barotropic gyre I: Circulation control by eddy vorticity fluxes to an enhanced removal region. J. Mar. Res., 62, 169–193.Google Scholar
Franklin, W. S., 1898. Review of P, Duhem, Traité Elementaire de Méchanique Chimique fondée sur la Thermodynamique. Two volumes. Paris, 1897. Phys. Rev., 6, 170–175.
Friedman, R. M., 1989. Appropriating the Weather: Vilhelm Bjerknes and the Construction of a Moder. Meteorology. Cornell University Press, 251 pp.
Frierson, D. M. W., Lu, J. & Chen, G., 2007. Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804.Google Scholar
Fu, L. L. & Flierl, G. R., 1980. Nonlinear energy and enstrophy transfers in a realistically stratified ocean. Dyn. Atmos. Oceans., 4, 219–246.Google Scholar
Gardiner, C. W., 1985. Handbook of Stochastic Methods. Springer-Verlag, 442 pp.
Gent, P. R. & McWilliams, J. C., 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.Google Scholar
Gent, P. R., Willebrand, J., McDougall, T. J. & McWilliams, J. C., 1995. Parameterizing eddy-induced transports in ocean circulation models. J. Phys. Oceanogr., 25, 463–474.Google Scholar
Gierasch, P. J., 1975. Meridional circulation and the maintenance of the Venus atmospheric rotation. J. Atmos. Sci., 32, 1038–1044.Google Scholar
Gill, A. E., 1971. The equatorial current in a homogeneous ocean. Deep-Sea Res., 18, 421–431.Google Scholar
Gill, A. E., 1975. Models of equatorial currents. In Proceedings of Numerical Models of Ocean Circulation., pp. 181–203. National Academy of Science.
Gill, A. E., 1980. Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.Google Scholar
Gill, A. E., 1982. Atmosphere–Ocean Dynamics. Academic Press, 662 pp.
Gill, A. E. & Clarke, A. J., 1974. Wind-induced upwelling, coastal currents and sea-level changes. Deep-Se. Res., 21, 325–345.Google Scholar
Gill, A. E., Green, J. S. A. & Simmons, A. J., 1974. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21, 499–528.Google Scholar
Gille, S. T., 1997. The Southern Ocean momentum balance: evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr., 27, 2219–2232.Google Scholar
Gilman, P. A. & Glatzmaier, G. A., 1981. Compressible convection in a rotating spherical shell. I. Anelastic equations. Astrophys. J. Suppl. Ser., 45, 335–349.Google Scholar
Giorgetta, M. A., Manzini, E. & Roeckner, E., 2002. Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29, 1245.Google Scholar
Gnanadesikan, A., 1999. A simple predictive model for the structure of the oceanic pycnocline. Science., 283, 2077–2079.Google Scholar
Godske, C. L., Bergeron, T., Bjerknes, J. & Budgaard, R. C., 1957. Dynamic Meteorology and Weather Forecasting. American Meteorological Society, 864 pp.
Goody, R. M. & Yung, Y. L., 1995. Atmospheric radiation: theoretical basis. Oxford University Press, 544 pp.
Gough, D. O., 1969. The anelastic approximation for thermal convection. J. Atmos. Sci., 216, 448–456.Google Scholar
Graham, F. S. & McDougall, T. J., 2013. Quantifying the nonconservative production of conservative temperature, potential temperature and entropy. J. Phys. Oceanogr., 43, 838–862.Google Scholar
Grant, H. L., Hughes, B. A., Vogel, W. M. & Moilliet, A., 1968. The spectrum of temperaure fluctuation in turbulent flow. J. Fluid Mech., 344, 423–442.Google Scholar
Grant, H. L., Stewart, R. W. & Moilliet, A., 1962. Turbulent spectra from a tidal channel. J. Fluid Mech., 12, 241–268.Google Scholar
Gray, D. D. & Giorgini, A., 1976. The validity of the Boussinesq approximation for liquids and gases. Int. J. Heat and Mass Transfer., 19, 545–551.Google Scholar
Gray, L. J., 2010. Stratospheric equatorial dynamics. In The Stratosphere: Dynamics, Transport, and Chemistry., Geophys. Monogr. Ser, Vol. 190 (2010).
Gray, L. J., Crooks, S., Pascoe, C. & Palmer, M., 2001. Solar and QBO influences on the timing of stratospheric sudden warmings. J. Atmos. Sci., 61, 2777–2796.Google Scholar
Gray, L. J., Phipps, S. J., Dunkerton, T. J., Baldwin, M. P. et al., 2001. A data study of the influence of the upper stratosphere on northern hemisphere stratospheric warmings. Quart. J. Roy. Meteor. Soc., 127, 1985–2003.Google Scholar
Greatbatch, R. J., 1998. Exploring the relationship between eddy-induced transport velocity, vertical momentum transfer, and the isopycnal flux of potential vorticity. J. Phys. Oceanogr., 28, 422–432.Google Scholar
Green, G., 1837. On the motion of waves in a variable canal of small depth and width. Trans. Camb. Phil. Soc., 6, 457–462.Google Scholar
Green, J. S. A., 1960. A problem in baroclinic stability. Quart. J. Roy. Meteor. Soc., 86, 237–251.Google Scholar
Green, J. S. A., 1970. Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157–185.Google Scholar
Green, J. S. A., 1977. The weather during July 1976: some dynamical considerations of the drought. Weather., 32, 120–128.Google Scholar
Green, J. S. A., 1999. Atmospheric Dynamics. Cambridge University Press, 213 pp.
Greenspan, H., 1962. A criterion for the existence of inertial boundary layers in oceanic circulation. Proc. Nat. Acad. Sci., 48, 2034–2039.Google Scholar
Gregg, M. C., 1998. Estimation and geography of diapycnal mixing in the stratified ocean. In J, Imberger, Ed., Physical Processes in Lakes and Oceans., pp. 305–338. American Geophysical Union.
Griffies, S. M., 1998. The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831–841.Google Scholar
Griffies, S. M., 2004. Fundamentals of Ocean Climate Models. Princeton University Press, 518 pp.
Grose, W. & Hoskins, B., 1979. On the influence of orography on large-scale atmospheric flow. J. Atmos. Sci., 36, 223–234.Google Scholar
Hadley, G., 1735. Concerning the cause of the general trade-winds. Phil. Trans. Roy. Soc., 29, 58–62.Google Scholar
Haine, T. W. N. & Marshall, J., 1998. Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634–658.Google Scholar
Hallberg, R. & Gnanadesikan, A., 2001. An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31, 3312–3330.Google Scholar
Hamilton, K., Wilson, R. J. & Hemler, R. S., 2001. Spontaneous QBO-like oscillations simulated by the GFDL SKYHI general circulation mode. J. Atmos. Sci., 58, 3271–3292.Google Scholar
Hamilton, K. P., 1998. Dynamics of the tropical middle atmosphere: a tutorial review. Atmosphere–Ocean., 36, 319–354.Google Scholar
Haney, R. L., 1971. Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241–248.Google Scholar
Harnik, N. & Heifetz, E., 2007. Relating overreflection and wave geometry to the counterpropagating Rossby wave perspective: Toward a deeper mechanistic understanding of shear instability. J. Atmos. Sci., 64, 7, 2238–2261.Google Scholar
Haurwitz, B., 1941. Dynamic meteorology. Haurwitz press, 380 pp. Reprinted in 2007.
Hayes, M., 1977. A note on group velocity. Proc. Roy. Soc. Lond. A., 354, 533–535.Google Scholar
Haynes, P., 2005. Stratospheric dynamics. Ann. Rev. Fluid Mech., 37, 263–293.Google Scholar
Haynes, P. H., 2015. Critical layers. Encycl. Atmos. Sci.,.2nd edn, 2, 317–323.Google Scholar
Haynes, P. H., Marks, C. J., McIntyre, M. E., Shepherd, T. G. & Shine, K. P., 1991. On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651–678.Google Scholar
Haynes, P. H. & McIntyre, M. E., 1987. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828–841.Google Scholar
Haynes, P. H. & McIntyre, M. E., 1990. On the conservation and impermeability theorem for potential vorticity. J. Atmos. Sci., 47, 2021–2031.Google Scholar
Heckley, W. & Gill, A., 1984. Some simple analytical solutions to the problem of forced equatorial long waves. Quart. J. Roy. Meteor. Soc., 110, 203–217.Google Scholar
Heifetz, E. & Caballero, R., 2014. An alternative view on the role of the ö-effect in the Rossby wave propagation mechanism. Tellus A., 66, 1–6.Google Scholar
Held, I. M., 1982. On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39, 412–417.Google Scholar
Held, I. M., 1983. Stationary and quasi-stationary eddies in the extratropical troposphere: theory. In B, Hoskins & R. P, Pearce, Eds., Large-Scale Dynamical Processes in the Atmosphere., pp. 127–168. Academic Press.
Held, I. M., 1985. Pseudomomentum and the orthogonality of modes in shear flows. J. Atmos. Sci., 42, 2280–2288.Google Scholar
Held, I. M., 2000. The general circulation of the atmosphere. In Woods Hole Program in Geophysical Fluid. Dynamics.(2000), pp. 66.
Held, I. M. & Hou, A. Y., 1980. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515–533.Google Scholar
Held, I. M. & Larichev, V. D., 1996. A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta-plane. J. Atmos. Sci., 53, 946–952.Google Scholar
Held, I. M., Tang, M. & Wang, H., 2002. Northern winter stationary waves: theory and modeling. J. Climate., 15, 2125–2144.Google Scholar
Helmholtz, H., 1858. Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewengungen entsprechen (On the integrals of the hydrodynamic equations that correspond to eddy motion). J. Reine Angew. Math., 25, 25–55. Engl. transl.: C, Abbe, Smithson. Misc. Collect., no. 34, pp. 78–93, Smithsonian Institution, Washington DC, 1893.
Helmholtz, H., 1868. Über discontinuirliche Flüssigkeitsbewegungen (On discontinuous liquid motion). Monats. Königl. Preuss. Akad. Wiss. Berlin., 23, 215–228. Engl. trans.: F. Guthrie: On discontinuous movements of fluids. Phil. Mag., 36, 337–346 (1868).Google Scholar
Hendershott, M., 1987. Single layer models of the general circulation. In H, Abarbanel & W. R, Young, Eds., General Circulation of the Ocean., pp. 202–267. Springer-Verlag.
Henning, C. C. & Vallis, G. K., 2004. The effect of mesoscale eddies on the main subtropical thermocline. J. Phys. Oceanogr., 34, 2428–2443.Google Scholar
Henning, C. C. & Vallis, G. K., 2005. The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel. J. Phys. Oceanogr., 35, 880–896.Google Scholar
Hide, R., 1969. Dynamics of the atmospheres of major planets with an appendix on the viscous boundary layer at the rigid boundary surface of an electrically conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26, 841–853.Google Scholar
Hilborn, R. C., 2004. Sea-gulls, butterflies, and grasshoppers: a brief history of the butterfly effect in nonlinear dynamics. Am. J. Phys., 72, 425–427.Google Scholar
Hirst, A. C., 1986. Unstable and damped equatorial modes in simple coupled ocean–atmosphere models. J. Atmos. Sci., 43, 606–632.Google Scholar
Hockney, R., 1970. The potential calculation and some applications. In Methods of Computational Physics., Vol. 9, pp. 135–211. Academic Press.Google Scholar
Hogg, N., 2001. Quantification of the deep circulation. In G, Siedler, J, Church, & J, Gould, Eds., Ocea. Circulation and Climate: Observing and Modelling the Global Ocean., pp. 259–270. Academic Press.
Hoinka, K. P., 1997. The tropopause: discovery, definition and demarcation. Meteorol. Z., 6, 281–303.Google Scholar
Holland, W. R., Keffer, T. & Rhines, P. B., 1984. Dynamics of the oceanic circulation: The potential vorticity field. Nature., 308, 698–705.Google Scholar
Holloway, G. & Hendershott, M. C., 1977. Stochastic closure for nonlinear Rossby waves. J. Fluid Mech., 82, 747–765.Google Scholar
Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A., 1985. Nonlinear stability of fluid and plasma equilibria. Phys. Rep., 123, 1–116.Google Scholar
Holmes, M. H., 2013. Introduction to Perturbation Methods. 2nd edn. Springer, 436 pp.
Holton, J. R., 1974. Forcing of mean flows by stationary waves. J. Atmos. Sci., 31, 942–945.Google Scholar
Holton, J. R., 1992. An Introduction to Dynamic Meteorology. 3rd edn. Academic Press, 507 pp.
Holton, J. R. & Hakim, G., 2012. An Introduction to Dynamic Meteorology. 5th edn. Academic Press, 552 pp.
Holton, J. R., Haynes, P. R., McIntyre, M. E., Douglass, A. R. et al., 1995. Stratosphere-troposphere exchange. Rev. Geophys., 33, 403–439.Google Scholar
Holton, J. R. & Lindzen, R. S., 1972. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 1076–1080.Google Scholar
Holton, J. R. & Mass, C., 1976. Stratospheric vacillation cycles. J. Atmos. Sci., 33, 2218–2215.Google Scholar
Holton, J. R. & Tan, H.-C., 1980. The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208.Google Scholar
Holton, J. R. & Tan, H.-C., 1982. The quasi-biennial oscillation in the northern hemisphere lower stratosphere. J. Meteor. Soc. Japan., 60, 140–158.Google Scholar
Hoskins, B. J. & Karoly, D. J., 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196.Google Scholar
Hough, S. S., 1897. On the application of harmonic analysis to the dynamical theory of the tides. Part I: On Laplace's “Oscillations of the first species”, and on the dynamics of ocean currents. Phil. Trans. (A)., 189 (IX), 201–258.Google Scholar
Hough, S. S., 1898. On the application of harmonic analysis to the dynamical theory of the tides. Part II: On the general integration of Laplace's dynamical equations. Phil. Trans. (A)., 191 (V), 139–186.Google Scholar
Huang, R. X., 1998. Mixing and available potential energy in a Boussinesq ocean. J. Phys. Oceanogr., 28, 669–678.Google Scholar
Huang, R. X., 1999. Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727–746.Google Scholar
Huang, R. X., 2010. Ocean Circulation. Cambridge University Press, 791 pp.
Hughes, C. W., 2002. Sverdrup-like theories of the Antarctic Circumpolar Current. J. Mar. Res., 60, 1–17.Google Scholar
Hughes, C. W. & de Cuevas, B., 2001. Why western boundary currents in realistic oceans are inviscid: a link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 2871–2885.Google Scholar
Hughes, G. O. & Griffiths, R. W., 2008. Horizontal convection. Ann. Rev. Fluid Mech., 185–2008, 40.Google Scholar
Ierley, G. R. & Ruehr, O. G., 1986. Analytic and numerical solutions of a nonlinear boundary value problem. Stud. Appl. Math., 75, 1–36.Google Scholar
Ilicak, M. & Vallis, G. K., 2012. Simulations and scaling of horizontal convection. Tellus A., 64, 1–17.Google Scholar
Il'in, A. M. & Kamenkovich, V. M., 1964. The structure of the boundary layer in the two-dimensional theory of ocean currents (in Russian). Okeanologiya., 4 (5), 756–769.Google Scholar
Ingersoll, A. P., 2005. Boussinesq and anelastic approximations revisited: potential energy release during thermobaric instability. J. Phys. Oceanogr., 35, 1359–1369.Google Scholar
IOC, SCOR & IAPSO, 2010. The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Technical report, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, unesco (English).
Iwayama, T., Shepherd, T. G. & Watanabe, T., 2002. An ‘ideal’ form of decaying two-dimensional turbulence. J. Fluid Mech., 456, 183–198.Google Scholar
Jackett, D. R. & McDougall, T. J., 1997. A neutral density variable for the world's oceans. J. Phys. Oceanogr., 28, 237–263.Google Scholar
Jackson, L., Hughes, C. W. & Williams, R. G., 2006. Topographic control of basin and channel flows: the role of bottom pressure torques and friction. J. Phys. Oceanogr., 36, 1786–1805.Google Scholar
Jansen, M. & Ferrari, R., 2012. Macroturbulent equilibration in a thermally forced primitive equation system. J. Atmos. Sci., 69, 695–713.Google Scholar
Jansen, M. & Ferrari, R., 2013. Equilibration of an atmosphere by adiabatic eddy fluxes. J. Atmos. Sci., 70, 2948–2962.Google Scholar
Jeffreys, H., 1924. On certain approximate solutions of linear differential equations of the second order. Proc. London Math. Soc., 23, 428–436.Google Scholar
Jeffreys, H., 1926. On the dynamics of geostrophic winds. Quart. J. Roy. Meteor. Soc., 51, 85–104.Google Scholar
Jeffreys, H. & Jeffreys, B. S., 1946. Methods of Mathematical Physics. Cambridge University Press, 728 pp.
Jin, F.-F., 1997a. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829.Google Scholar
Jin, F.-F., 1997b. An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830–847.Google Scholar
Johnson, G. C. & Bryden, H. L., 1989. On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36, 39–53.Google Scholar
Jones, D. B. A., Schneider, H. R. & McElroy, M. B., 1998. Effects of the quasi-biennial oscillation on the zonally averaged transport of tracer. J. Geophys. Res., 103, 11235–11249.Google Scholar
Jones, W. L., 1967. Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech., 30, 439–448.Google Scholar
Jucker, M., 2014. Scientific visualisation of atmospheric data with ParaView. J. Open Res. Software., 2, e4.Google Scholar
Jucker, M., Fueglistaler, S. & Vallis, G. K., 2013. Maintenance of stratospheric structure in an idealized general circulation model. J. Atmos. Sci., 70, 3341–3358.Google Scholar
Jucker, M., Fueglistaler, S. & Vallis, G. K., 2014. Stratospheric sudden warmings in an idealized GCM. J. Geophys. Res. (Atmospheres)., 119, 11054–11064.Google Scholar
Juckes, M. N., 2000. The static stability of the midlatitude troposphere: the relevance of moisture. J. Atmos. Sci., 57, 3050–3057.Google Scholar
Juckes, M. N., 2001. A generalization of the transformed Eulerian-mean meridional circulation. Quart. J. Roy. Meteor. Soc., 127, 147–160.Google Scholar
Kalnay, E., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.Google Scholar
Karsten, R., Jones, H. & Marshall, J., 2002. The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr., 32, 39–54.Google Scholar
Keffer, T., 1985. The ventilation of the world's oceans: maps of potential vorticity. J. Phys. Oceanogr., 15, 509–523.Google Scholar
Kessler, W. S., Johnson, G. C. & Moore, D. W., 2003. Sverdrup and nonlinear dynamics of the Pacific equatorial currents. J. Phys. Oceanogr., 33, 994–1008.Google Scholar
Kevorkian, J. & Cole, J. D., 2011. Multiple Scale and Singular Perturbation Methods. Springer-Verlag, 648 pp.
Kibel, I., 1940. Priloozhenie k meteorogi uravnenii mekhaniki baroklinnoi zhidkosti (Application of baroclinic fluid dynamic equations to meteorology). SSSR Ser. Geogr. Geofiz., 5, 627–637.Google Scholar
Kiladis, G. N., Straub, K. H. & Haertel, P. T., 2005. Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 2790–2809.Google Scholar
Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H. & Roundy, P. E., 2009. Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003.Google Scholar
Killworth, P. D., 1987. A continuously stratified nonlinear ventilated thermocline. J. Phys. Oceanogr., 17, 1925–1943.Google Scholar
Killworth, P. D., 1997. On the parameterization of eddy transfer. Part I: theory. J. Marine Res., 55, 1171–1197.Google Scholar
Killworth, P. D. & McIntyre, M. E., 1985. Do Rossby-wave critical layers absorb, reflect, or over-reflect? J. Fluid Mech., 161, 449–492.Google Scholar
Kim, H.-K. & Lee, S., 2001. Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. J. Atmos. Sci., 58, 19, 2859–2871.Google Scholar
Kimoto, M. & Ghil, M., 1993. Multiple flow regimes in the northern hemisphere winter. Part 1: Methodology and hemispheric regimes. J. Atmos. Sci., 50, 2625–2643.Google Scholar
Kolmogorov, A. N., 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Acad. Sci. USSR., 30, 299–303.Google Scholar
Kolmogorov, A. N., 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers. J. Fluid Mech., 13, 82–85.Google Scholar
Kraichnan, R., 1967. Inertial ranges in two-dimensional turbulence. Phys. Fluids., 10, 1417–1423.Google Scholar
Kraichnan, R. & Montgomery, D., 1980. Two-dimensional turbulence. Rep. Prog. Phys., 43, 547–619.Google Scholar
Kramers, H. A., 1926. Wellenmechanik und halbzahlige Quantisierung (Wave mechanics and semi-integral quantization). Zeit. fur Physik A., 39, 828–840.Google Scholar
Kundu, P., Allen, J. S. & Smith, R. L., 1975. Modal decomposition of the velocity field near the Oregon coast. J. Phys. Oceanogr., 5, 683–704.Google Scholar
Kundu, P., Cohen, I. M. & Dowling, D. R., 2015. Fluid Mechanics. Academic Press, 928 pp.
Kuo, H.-l., 1949. Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteorol., 6, 105–122.Google Scholar
Kuo, H.-l., 1951. Vorticity transfer as related to the development of the general circulation. J. Meteorol., 8, 307–315.Google Scholar
Kushner, P. J., 2010. Annular modes of the troposphere and stratosphere. In The Stratosphere: Dynamics. Transport, and Chemistry., Geophys. Monogr. Ser (2010).
Kushnir, Y., Robinson, W. A., Bladé, I., Hall, N. M. J. et al., 2002. Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J. Climate., 15, 2233–2256.Google Scholar
Labitzke, K., Kunze, M. & Bronnimann, S., 2006. Sunspots, the QBO and the stratosphere in north polar regions — 20 years later. Meteor. Z., 15, 355–363.Google Scholar
LaCasce, J. H. & Ohlmann, C., 2003. Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res., 65, 285–312.Google Scholar
Lait, L. R., 1994. An alternative form for potential vorticity. J. Atmos. Sci., 51, 1754–1759.Google Scholar
Lamb, H., 1932. Hydrodynamics. Cambridge University Press, reissued by Dover Publications 1945, 768 pp.
Lanczos, C., 1970. The Variational Principles of Mechanics. University of Toronto Press, Reprinted by Dover Publications 1980, 418 pp.
Landau, L. D., 1944. On the problem of turbulence. Dokl. Akad. Nauk SSSR., 44, 311–314.Google Scholar
Landau, L. D. & Lifshitz, E. M., 1987. Fluid Mechanics.(Course of Theoretical Physics, v. 6). 2nd edn. Pergamon Press, 539 pp.
Larichev, V. D. & Held, I. M., 1995. Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr., 25, 2285–2297.Google Scholar
Latif, M. & Barnett, T., 1996. Decadal climate variability over the North Pacific and North America: dynamics and predictability. J. Climate., 10, 219–239.Google Scholar
Lau, K.-M., 1981. Oscillations in a simple equatorial climate system. J. Atmos. Sci., 38, 248–261.Google Scholar
Lawrence, M. G., 2005. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Am. Meteor. Soc., 86, 225–233.Google Scholar
LeBlond, P. H. & Mysak, L. A., 1980. Waves in the Ocean. Elsevier, 616 pp.
Ledwell, J., Watson, A. & Law, C., 1998. Mixing of a tracer released in the pycnocline. J. Geophys. Res., 103, 21499–21529.Google Scholar
Lee, M.-M., Marshall, D. P. & Williams, R. G., 1997. On the eddy transfer of tracers: advective or diffusive? J. Mar. Res., 55, 483–595.Google Scholar
Lee, T. D., 1951. Difference between turbulence in a two-dimensional fluid and in a three-dimensional fluid. J. Appl. Phys., 22, 524.Google Scholar
Leetmaa, A., Niiler, P. & Stommel, H., 1977. Does the Sverdrup relation account for the mid-Atlantic circulation? J. Mar. Res., 35, 1–10.Google Scholar
Leith, C. E., 1968. Diffusion approximation for two-dimensional turbulence. Phys. Fluids., 11, 671–672.Google Scholar
Lesieur, M., 1997. Turbulence in Fluids: Third Revised and Enlarged Edition. Kluwer, 515 pp.
Levinson, N., 1950. The 1st boundary value problem for for small epsilon. Ann. Math., 51, 429–445.Google Scholar
Lewis, R., Ed., 1991. Meteorological Glossary. 6th edn. Her Majesty's Stationery Office, 335 pp.
Lighthill, J., 1978. Waves in Fluids. Cambridge University Press, 504 pp.
Lighthill, M. J., 1965. Group velocity. J. Inst. Math. Appl., 1, 1–28.Google Scholar
Lighthill, M. J., 1969. Dynamic response of the Indian Ocean to onset of the southwest monsoon. Phil. Trans. Roy. Soc. Lond. A., 265, 45–92.Google Scholar
Lilly, D. K., 1969. Numerical simulation of two-dimensional turbulence. Phys. Fluid Suppl. II., 12, 240–249.Google Scholar
Lilly, D. K., 1996. A comparison of incompressible, anelastic and Boussinesq dynamics. Atmos. Res., 40, 143–151.Google Scholar
Limpasuvan, V., Thompson, D. W. J. & Hartmann, D. L., 2000. The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate., 17, 2584–2596.Google Scholar
Lindborg, E., 1999. Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259–288.Google Scholar
Lindborg, E. & Alvelius, K., 2000. The kinetic energy spectrum of the two-dimensional enstrophy turbulence cascade. Phys. Fluids., 12, 945–947.Google Scholar
Lindzen, R. S. & Farrell, B., 1980. The role of the polar regions in global climate, and a new parameterization of global heat transport. Mon. Wea. Rev., 108, 2064–2079.Google Scholar
Lindzen, R. S. & Holton, J. R., 1968. A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 1095–1107.Google Scholar
Lindzen, R. S. & Hou, A. Y., 1988. Hadley circulation for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 2416–2427.Google Scholar
Lindzen, R. S., Lorenz, E. N. & Plazman, G. W., Eds., 1990. The Atmosphere — a Challenge: the Science of Jul. Gregory Charney. American Meteorological Society,321 pp.
Lindzen, R. S. & Nigam, S., 1987. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436.Google Scholar
Liouville, J., 1837. Sur le développement des fonction ou parties de fonction en séries (On the development of functions of parts of functions in series). J. Math. Pures Appl., 2, 16–35.Google Scholar
Lipps, F. B. & Hemler, R. S., 1982. A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39, 2192–2210.Google Scholar
Longuet-Higgins, M. S., 1964. Planetary waves on a rotating sphere, I. Proc. Roy. Soc. Lond. A., 279, 446–473.Google Scholar
Longuet-Higgins, M. S., 1968. The eigenfunctions of Laplace's tidal equations over a sphere. Proc. Roy. Soc. Lond. A., 262, 511–607.Google Scholar
Lorenz, E. N., 1955. Available potential energy and the maintenance of the general circulation. Tellus., 7, 157–167.Google Scholar
Lorenz, E. N., 1963. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.Google Scholar
Lorenz, E. N., 1967. The Nature and the Theory of the General Circulation of the Atmosphere. WMO Publications, Vol. 218, World Meteorological Organization.
Lozier, S., Owens, W. B. & Curry, R. G., 1996. The climatology of the North Atlantic. Prog. Oceanog., 36, 1–44.Google Scholar
Ludlam, F. H., 1966. Cumulus and cumulonimbus convection. Tellus., 18, 687–698.Google Scholar
Lumpkin, R. & Speer, K., 2007. Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2550–2562.Google Scholar
Luyten, J. R., Pedlosky, J. & Stommel, H., 1983. The ventilated thermocline. J. Phys. Oceanogr., 13, 292–309.Google Scholar
Madden, R. A. & Julian, P. R., 1971. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.Google Scholar
Madden, R. A. & Julian, P. R., 1972. Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.Google Scholar
Majda, A. J. & Klein, R., 2003. Systematic multiscale models for the tropics. J. Atmos. Sci., 60, 393–408.Google Scholar
Majda, A. J. & Stechmann, S. N., 2009. The skeleton of tropical intraseasonal oscillations. Proc. Nat. Acad. Sci., 106, 8417–8422.Google Scholar
Maltrud, M. E. & Vallis, G. K., 1991. Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech., 228, 321–342.Google Scholar
Manabe, S. & Stouffer, R. J., 1988. Two stable equilibria of a coupled ocean–atmosphere model. J. Climate., 1, 841–866.Google Scholar
Manabe, S. & Strickler, R. F., 1964. Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361–385.Google Scholar
Manabe, S. & Wetherald, R. T., 1980. On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. J. Atmos. Sci., 37, 99–118.Google Scholar
Mapes, B. E., 1997. Equilibrium vs. activation control of large-scale variations of tropical deep convection. In R. K, Smith, Ed., The Physics and Parameterization of Moist Atmospheric Convection., pp. 321–358. Springer.
Mapes, B. E., 1998. The large-scale part of tropical mesoscale convective system circulations: A linear vertical spectral band model. J. Meteor. Soc. Japan., 76, 29–55.Google Scholar
Mapes, B. E., 2000. Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 1515–1535.Google Scholar
Marcus, P. S., 1993. Jupiter's Great Red Spot and other vortices. Ann. Rev. Astron. Astrophys., 31, 523–573.Google Scholar
Margules, M., 1903. Über die Energie der Stürme (On the energy of storms). Jahrb. Kais.-kön Zent. für Met. und Geodynamik, Vienna., 26 pp. Engl. transl.: C. Abbe, Smithson. Misc. Collect., no. 51, pp. 533-595, Smithsonian Institution, Washington D. C., 1910.
Marotzke, J., 1989. Instabilities and multiple steady states of the thermohaline circulation. In D. L. T, Anderson & J, Willebrand, Eds., Oceanic Circulation Models: Combining Data and Dynamics., pp. 501–511. NATO ASI Series, Kluwer.
Marshall, D. P., Maddison, J. R. & Berloff, P. S., 2012. A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539–557.Google Scholar
Marshall, D. P., Williams, R. G. & Lee, M.-M., 1999. The relation between eddy-induced transport and isopycnic gradients of potential vorticity. J. Phys. Oceanogr., 29, 1571–1578.Google Scholar
Marshall, J. & Plumb, R. A., 2008. Atmosphere, Ocean and Climate Dynamics: An Introductory Text. Academic Press, 344 pp.
Marshall, J. & Speer, K., 2012. Closure of the meridional overturning circulation through southern ocean upwelling. Nature Geosciences., 5, 171–180.Google Scholar
Marshall, J. C., 1981. On the parameterization of geostrophic eddies in the ocean. J. Phys. Oceanogr., 11, 257–271.Google Scholar
Marshall, J. C. & Nurser, A. J. G., 1992. Fluid dynamics of oceanic thermocline ventilation. J. Phys. Oceanogr., 22, 583–595.Google Scholar
Marshall, J. C. & Radko, T., 2003. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 22, 2341–2354.Google Scholar
Marshall, J. C. & Schott, F., 1999. Open-ocean convection: observations, theory, and models. Rev. Geophys., 37, 1–64.Google Scholar
Matsuno, T., 1966. Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan., 44, 25–43.Google Scholar
Matsuno, T., 1971. A dynamical model of the sudden stratospheric warming. J. Atmos. Sci., 28, 1479–1494.Google Scholar
Maze, G. & Marshall, J., 2011. Diagnosing the observed seasonal cycle of Atlantic subtropical mode water using potential vorticity and its attendant theorems. J. Phys. Oceanogr., 41, 1986–1999.Google Scholar
McCarthy, M. C. & Talley, L. D., 1999. Three-dimensional isoneutral potential vorticity structure in the Indian Ocean. J. Geophys. Res. (Oceans)., 104, 13251–13267.Google Scholar
McCreary, J. P., 1981. A linear stratified ocean model of the equatorial undercurrent. Phil. Trans. Roy. Soc. Lond A., A298, 603–635.Google Scholar
McCreary, J. P., 1985. Modeling equatorial ocean circulation. Ann. Rev. Fluid Mech., 17, 359–407.Google Scholar
McCreary, J. P. & Lu, P., 1994. Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J. Phys. Oceanogr., 24, 466–497.Google Scholar
McDougall, T. J., 1987. Neutral surfaces. J. Phys. Oceanogr., 17, 1950–1964.Google Scholar
McDougall, T. J., 1998. Three-dimensional residual mean theory. In E. P, Chassignet & J, Verron, Eds., Ocea. Modeling and Parameterization., pp. 269–302. Kluwer Academic.
McDougall, T. J., 2003. Potential enthalphy: a conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945–963.Google Scholar
McIntosh, P. C. & McDougall, T. J., 1996. Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26, 1655–1660.Google Scholar
McIntyre, M. E. & Norton, W. A., 1990. Dissipative wave–mean interactions and the transport of vorticity or potential vorticity. J. Fluid Mech., 212, 403–435.Google Scholar
McIntyre, M. E. & Norton, W. A., 2000. Potential vorticity inversion on a hemisphere. J. Atmos. Sci., 57, 1214–1235.Google Scholar
McIntyre, M. E. & Shepherd, T. G., 1987. An exact local conservation theorem for finite-amplitude disturbances to nonparallel shear flows, with remarks on Hamiltonian structure and on Arnol'd's stability theorems. J. Fluid Mech., 181, 527–565.Google Scholar
McKee, W. D., 1973. The wind-driven equatorial circulation in a homogeneous ocean. Deep-Sea Res., 20, 889–899.Google Scholar
McPhaden, M. J., Timmermann, A., Widlansky, M. J., Balmaseda, M. A. & Stockdale, T. N., 2015. The curious case of the El Niño that never happened: A perspective from 40 years of progress in climate research and forecasting. Bull. Am. Meteor. Soc., 96, 1647–1665.Google Scholar
McWilliams, J. C., 1984. The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146, 21–43.Google Scholar
Mihaljan, J. M., 1962. A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid. Astrophysical J., 136, 1126–1133.Google Scholar
Millero, F. J., Feistel, R., Wright, D. G. & McDougall, T. J., 2008. The composition of standard seawater and the definition of the reference-composition salinity scale. Deep Sea Res., Part I., 55, 50–72.Google Scholar
Moffatt, H. K., 1983. Transport effects associated with turbulence with particular attention to the influence of helicity. Rep. Progress Phys., 46, 621–664.Google Scholar
Monin, A. S. & Yaglom, A. M., 1971. Statistical Fluid Mechanics: Mechanics of Turbulence, Vols. 1 and 2. MIT Press and Dover Publications, 1680 pp.
Morel, P. & Larcheveque, M., 1974. Relative dispersion of constant-level balloons in the 200 mb general circulation. J. Atmos. Sci., 31, 2189–2196.Google Scholar
Mundt, M., Vallis, G. K. & Wang, J., 1997. Balanced models for the large- and meso-scale circulation. J. Phys. Oceanogr., 27, 1133–1152.Google Scholar
Munk, W. H., 1950. On the wind-driven ocean circulation. J. Meteorol., 7, 79–93.Google Scholar
Munk, W. H., 1966. Abyssal recipes. Deep-Sea Res., 13, 707–730.Google Scholar
Munk, W. H. & Palmén, E., 1951. Note on dynamics of the Antarctic Circumpolar Current. Tellus., 3, 53–55.Google Scholar
Munk, W. H. & Wunsch, C., 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res., 45, 1976–2009.Google Scholar
Namias, J., 1959. Recent seasonal interaction between North Pacific waters and the overlying atmospheric circulation. J. Geophys. Res., 64, 631–646.Google Scholar
Neelin, J. D., 1988. A simple model for surface stress and low-level flow in the tropical atmosphere driven by prescribed heating. Quart. J. Roy. Meteor. Soc., 114, 747–770.Google Scholar
Neelin, J. D. & Zeng, N., 2000. A quasi-equilibrium tropical circulation model—formulation. J. Atmos. Sci., 57, 1741–1766.Google Scholar
Newell, A. C., 1969. Rossby wave packet interactions. J. Fluid Mech., 35, 255–271.Google Scholar
Newman, P. A., Coy, L., Pawson, S. & Lait, L. R., 2016. The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett., 43, 8791–8797. doi:10.1002/2016GL070373.Google Scholar
Nicholls, S., 1985. Aircraft observations of the Ekman layer during the joint air-sea interaction experiment. Quart. J. Roy. Meteor. Soc., 111, 391–426.Google Scholar
Nikurashin, M. & Vallis, G. K., 2011. A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485–502.Google Scholar
Nikurashin, M. & Vallis, G. K., 2012. A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 1652–1667.Google Scholar
Nof, D., 2003. The Southern Ocean's grip on the northward meridional flow. In Progress in Oceanography., Vol. 56, pp. 223–247. Pergamon.
Novikov, E. A., 1959. Contributions to the problem of the predictability of synoptic processes. Izv. An. SSS. Ser. Geophys., 11, 1721. Eng. transl.: Am. Geophys. U. Transl.,.1209-1211.Google Scholar
Nycander, J., 2011. Energy conversion, mixing energy, and neutral surfaces with a nonlinear equation of state. J. Phys. Oceanogr., 41, 28–41.Google Scholar
Nycander, J. & Roquet, F., 2015. The nonlinear equation of state of sea water and the global water mass distribution. Geophys. Res. Lett., 42, 7714–7721. In press.Google Scholar
Oberbeck, A., 1879. Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge vor Temperaturdifferenzen (On the thermal conduction of liquids taking into account flows due to temperature differences). Ann. Phys. Chem., Neue Folge., 7, 271–292.Google Scholar
Oberbeck, A., 1888. Über die Bewegungserscheinungen der Atmosphäre (On the phenomena of motion in the atmosphere). Sitzb. K. Preuss. Akad. Wiss., 7, 383–395 and 1129–1138. Engl trans.: in B, Saltzman, Ed., Theory of Thermal Convection., Dover, 162–183.
Obukhov, A. M., 1941. Energy distribution in the spectrum of turbulent flow. Izv. Akad. Nauk. SSR, Ser. Geogr. Geofiz., 5, 453–466.Google Scholar
Obukhov, A. M., 1949. Structure of the temperature field in turbulent flows. Izv. Akad. Nauk. SSR, Ser. Geogr. Geofiz., 13, 58–63.Google Scholar
Obukhov, A. M., 1962. On the dynamics of a stratified liquid. Dokl. Akad. Nauk SSSR., 145, 1239–1242. Engl. transl.: Soviet Physics–Dokl..7, 682–684.Google Scholar
Oetzel, K. & Vallis, G. K., 1997. Strain, vortices, and the enstrophy inertial range in two-dimensional turbulence. Phys. Fluids., 9, 2991–3004.Google Scholar
O'Gorman, P. A., Lamquin, N., Schneider, T. & Singh, M. S., 2011. The relative humidity in an isentropic advection–condensation model: Limited poleward influence and properties of subtropical minima. J. Atmos. Sci., 68, 3079–3093.Google Scholar
O'Gorman, P. A. & Pullin, D. I., 2005. Effect of Schmidt number of the velocity-scaler cospectrum in isotropic turbulence with a mean scalar gradient. J. Fluid Mech., 532, 111–140.Google Scholar
Ogura, Y. & Phillips, N. A., 1962. Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173–179.Google Scholar
Olbers, D., 1998. Comments on “On the obscurantist physics of ‘form drag’ in theorizing about the Circumpolar Current”. J. Phys. Oceanogr., 28, 1647–1654.Google Scholar
Olbers, D., Borowski, D., Völker, C. & Wolff, J.-O., 2004. The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarctic Science., 16, 439–470.Google Scholar
Olbers, D., Willebrand, J. & Eden, C., 2012. Ocean Dynamics. Springer, 704 pp.
Ollitrault, M., Gabillet, C. & Colin de Verdière, A., 2005. Open ocean regimes of relative dispersion. J. Fluid. Mech., 533, 381–407.Google Scholar
Onsager, L., 1931. Reciprocal relations in irreversible processes. II. Phys. Rev., 38, 2265–2279.Google Scholar
Onsager, L., 1949. Statistical hydrodynamics. Nuovo Cim. (Suppl.)., 6, 279–287.Google Scholar
Ooyama, K.., 1963. A dynamical model for the study of tropical cyclone development. New York University, 26pp, unpublished manuscript.
Ooyama, K. V., 1982. Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan., 60, 369–380.Google Scholar
Orlanski, I. & Sheldon, J. P., 1995. Stages in the energetics of baroclinic systems. Tellus A., 47, 605–628.Google Scholar
Osprey, S. M., Butchart, N., Knight, J. R., Scaife, A. et al., 2016. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science., 353, 1424–1427.Google Scholar
Paldor, N., Rubin, S. & Mariono, A. J., 2007. A consistent theory for linear waves of the shallow-water equations on a rotating plane in midlatitudes. J. Atmos. Sci., 37, 115–128.Google Scholar
Paldor, N. & Sigalov, A., 2011. An invariant theory of the linearized shallow water equations with rotation and its application to a sphere and a plane. Dyn. Atmos. Oceans., 51, 26–44.Google Scholar
Palmer, T. N., 1981. Diagnostic study of a wavenumber-2 stratospheric sudden warming in a transformed Eulerian-mean formalism. J. Atmos. Sci., 38, 844–855.Google Scholar
Palmer, Ts. N., 1997. A nonlinear dynamical perspective on climate prediction. J. Climate., 12, 575–591.Google Scholar
Palmer, T. N., 2009. Edward Lorenz, 1917–2008. Biogr. Mems Fell. R. Soc., 55, 139–155.
Paparella, F. & Young, W. R., 2002. Horizontal convection is non-turbulent. J. Fluid Mech., 466, 205–214.Google Scholar
Pascoe, C. L., Gray, L. J., Crooks, S. A., Juckes, M. N. & Baldwin, M. P., 2005. The quasi-biennial oscillation: Analysis using ERA-40 data. J. Geophys. Res., 110, D08105.Google Scholar
Pauluis, O., 2007. Sources and sinks of available potential energy in a moist atmosphere. J. Atmos. Sci., 64, 2627–2641.Google Scholar
Pauluis, O., 2008. Thermodynamic consistency of the anelastic approximation for a moist atmosphere. J. Atmos. Sci., 65, 2719–2729.Google Scholar
Pedlosky, J., 1964. The stability of currents in the atmosphere and ocean. Part I. J. Atmos. Sci., 21, 201–219.Google Scholar
Pedlosky, J., 1987a. Geophysical Fluid Dynamics. 2nd edn. Springer-Verlag, 710 pp.
Pedlosky, J., 1987b. An inertial theory of the equatorial undercurrent. J. Phys. Oceanogr., 17, 1978–1985.Google Scholar
Pedlosky, J., 1996. Ocean Circulation Theory. Springer-Verlag, 453 pp.
Pedlosky, J., 2003. Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer-Verlag, 260 pp.
Peixoto, J. P. & Oort, A. H., 1992. Physics of Climate. American Institute of Physics, 520 pp.
Peltier, W. R. & Stuhne, G., 2002. The upscale turbulence cascade: shear layers, cyclones and gas giant bands. In R. P, Pearce, Ed., Meteorology at the Millennium, pp. 43–61. Academic Press.
Persson, A., 1998. How do we understand the Coriolis force? Bull. Am. Meteor. Soc., 79, 1373–1385.Google Scholar
Philander, S. G., 1990. El Niño, La Niña, and the Southern Oscillation. Academic Press, 289 pp.
Phillips, N. A., 1954. Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6, 273–286.Google Scholar
Phillips, N. A., 1956. The general circulation of the atmosphere: a numerical experiment. Quart. J. Roy. Meteor. Soc., 82, 123–164.Google Scholar
Phillips, N. A., 1963. Geostrophic motion. Rev. Geophys., 1, 123–176.Google Scholar
Phillips, N. A., 1966. The equations of motion for a shallow rotating atmosphere and the traditional approximation. J. Atmos. Sci., 23, 626–630.Google Scholar
Phillips, N. A., 1973. Principles of large-scale numerical weather prediction. In P, Morel, Ed., Dynamic Meteorology, pp. 1–96. Riedel.
Phillips, O., 1972. Turbulence in a strongly stratified fluid—is it unstable? In Deep Sea Research and Oceanographic Abstracts, Vol. 19 (1972), pp. 79–81. Elsevier.
Pierini, S. & Vulpiani, A., 1981. Nonlinear stability analysis in multi-layer quasigeostrophic system. J. Phys. A, 14, L203–L207.Google Scholar
Pierrehumbert, R. T., 2010. Principles of Planetary Climate. Cambridge University Press, 652 pp.
Pierrehumbert, R. T., Brogniez, H. & Roca, R., 2007. On the relative humidity of the atmosphere. In T, Schneider & A, Sobel, Eds., The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges, pp. 143–185. Princeton University Press.
Pierrehumbert, R. T. & Swanson, K. L., 1995. Baroclinic instability. Ann. Rev. Fluid Mech., 27, 419–467.Google Scholar
Plumb, R., 1981. Instability of the distorted polar night vortex: A theory of stratospheric warmings. J. Atmos. Sci., 38, 2514–2531.Google Scholar
Plumb, R. & McEwan, A., 1978. The instability of a forced standing wave in a viscous stratified fluid: A laboratory analogue of. the Quasi-Biennial Oscillation. J. Atmos. Sci., 35, 1827–1839.Google Scholar
Plumb, R. A., 1977. The interaction of two internal waves with the mean flow: Implications for the theory of the Quasi-Biennial Oscillation. J. Atmos. Sci., 34, 1847–1858.Google Scholar
Plumb, R. A., 1979. Eddy fluxes of conserved quantities by small-amplitude waves. J. Atmos. Sci., 36, 1699– 1704.Google Scholar
Plumb, R. A., 1984. The quasi-biennial oscillation. In J. R, Holton & T, Matsuno, Eds., Dynamics of the Middle Atmosphere, pp. 217–251. Terra Scientific Publishing.
Plumb, R. A., 1990. A nonacceleration theorem for transient quasi-geostrophic eddies on a threedimensional time-mean flow. J. Atmos. Sci., 47, 1825–1836.Google Scholar
Plumb, R. A., 2002. Stratospheric transport. J. Meteor. Soc. Japan, 80, 793–809.Google Scholar
Plumb, R. A. & Bell, R. C., 1982. An analysis of the quasi-biennial oscillation on an equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 108, 335–352.Google Scholar
Poincaré, H., 1893. Théorie des Tourbillons (Theory of Vortices [literally, Swirls]). Georges Carré, Éditeur. Reprinted by Éditions Jacques Gabay, 1990, 211 pp.
Poincaré, H., 1908. Science and Method. T, Nelson and Sons. Engl. transl.: F, Maitland. Reprinted in The Value of Science: Essential Writings of Henri Poincaré, Ed. S. J, Gould, Random House, 584 pp.
Polzin, K. L., Toole, J. M., Ledwell, J. R. & Schmidt, R. W., 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96.Google Scholar
Pope, S. B., 2000. Turbulent Flows. Cambridge University Press, 754 pp.
Price, J. F., Weller, R. A. & Schudlich, R. R., 1987. Wind-driven ocean currents and Ekman transport. Science, 238, 1534–1538.Google Scholar
Proudman, J., 1916. On the motion of solids in liquids. Proc. Roy. Soc. Lond. A, 92, 408–424.Google Scholar
Queney, P., 1948. The problem of air flow over mountains: A summary of theoretical results. Bull. Am. Meteor. Soc., 29, 16–26.Google Scholar
Quinn, W. H., 1974. Monitoring and predicting El Niño invasions. J. Appl. Meteor., 13, 825–830.Google Scholar
Quon, C. & Ghil, M., 1992. Multiple equilibria in thermosolutal convection due to salt-flux boundary conditions. J. Fluid Mech., 245, 449–484.Google Scholar
Randall, D. A., 2015. An Introduction to the Global Circulation of the Atmosphere. Princeton University Press, 456 pp.
Randel, W. J., Wu, F., Swinbank, R., Nash, J. & O'Neill, A., 1999. Global QBO circulation derived from UKMO stratospheric analyse. J. Atmos. Sci., 56, 457–474.Google Scholar
Rayleigh, Lord, 1880. On the stability, or instability, of certain fluid motions. Proc. London Math. Soc., 11, 57–70.Google Scholar
Rayleigh, Lord, 1894. The Theory of Sound, Volume II. 2nd edn. Macmillan, 522 pp. Reprinted by Dover Publications, 1945.
Rayleigh, Lord, 1912. On the propagation of waves through a stratified medium, with special reference to the question of reflection. Proc. Roy. Soc. Lond. A, 86, 207–226.Google Scholar
Raymond, D. J., 1995. Regulation of moist convection over the west Pacific warm pool. J. Atmos. Sci., 52, 3945–3959.Google Scholar
Raymond, D. J., 1997. Boundary layer quasi-equilibrium. In R. K, Smith, Ed., The Physics and Parameterization of Moist Atmospheric Convection, pp. 387–397. Springer.
Raymond, D. J. & Fuchs, Ž., 2009. Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 3031–3046.Google Scholar
Read, P. L., 2001. Transition to geostrophic turbulence in the laboratory, and as a paradigm in atmospheres and oceans. Surveys Geophys., 33, 265–317.Google Scholar
Reed, R. J., 1960. The structure and dynamics of the 26-month oscillation. Paper presented at the 40th anniversary meeting of the Am. Meter. Soc., Boston.
Reed, R. J., Campbell, W. J., Rasmussen, L. A. & Rogers, D. G., 1961. Evidence of a downward-propagating annual wind reversal in the equatorial stratosphere. J. Geophys. Res., 66, 813–818.Google Scholar
Reif, F., 1965. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, 651 pp.
Rhines, P. B., 1975. Waves and turbulence on a -plane. J. Fluid. Mech., 69, 417–443.Google Scholar
Rhines, P. B., 1977. The dynamics of unsteady currents. In E. A, Goldberg, I. N, McCane, J. J, O'Brien, & J. H, Steele, Eds., The Sea, Vol. 6, pp. 189–318. J. Wiley and Sons.
Rhines, P. B. & Holland, W. R., 1979. A theoretical discussion of eddy-driven mean flows. Dyn. Atmos. Oceans, 3, 289–325.Google Scholar
Rhines, P. B. & Young, W. R., 1982a. Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347–367.Google Scholar
Rhines, P. B. & Young, W. R., 1982b. A theory of wind-driven circulation. I. Mid-ocean gyres. J. Mar. Res. (Suppl), 40, 559–596.Google Scholar
Richardson, L. F., 1920. The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. Lond. A, 97, 354–373.Google Scholar
Richardson, L. F., 1922. Weather Prediction by Numerical Process. Cambridge University Press, 236 pp. Reprinted by Dover Publications.
Richardson, L. F., 1926. Atmospheric diffusion on a distance-neighbour graph. Proc. Roy. Soc. Lond. A, 110, 709–737.Google Scholar
Richardson, P. L., 1983. Eddy kinetic-energy in the North Atlantic from surface drifters. J. Geophys. Res., 88, 4355–4367.Google Scholar
Riehl, H. & Fultz, D., 1957. Jet stream and long waves in a steady rotating-dishpan experiment: structure of the circulation. Quart. J. Roy. Meteor. Soc., 82, 215–231.Google Scholar
Rintoul, S. R., Hughes, C. & Olbers, D., 2001. The Antarctic Circumpolar Current system. In G, Siedler, J, Church, & J, Gould, Eds., Ocean Circulation and Climate, pp. 271–302. Academic Press.
Ripa, P., 1981. On the theory of nonlinear wave–wave interactions among geophysical waves. J. Fluid Mech., 103, 87–115.Google Scholar
Robinson, A. R., 1966. An investigation into the wind as the cause of the equatorial undercurrent. J. Mar. Res., 24, 179–204.Google Scholar
Robinson, A. R., Ed., 1984. Eddies in Marine Science. Springer-Verlag, 609 pp.
Robinson, A. R. & McWilliams, J. C., 1974. The baroclinic instability of the open ocean. J. Phys. Oceanogr., 4, 281–294.Google Scholar
Robinson, A. R. & Stommel, H., 1959. The oceanic thermocline and the associated thermohaline circulation. Tellus, 11, 295–308.Google Scholar
Rooth, C., 1982. Hydrology and ocean circulation. Prog. Oceanogr., 11, 131–149.Google Scholar
Roquet, F., Madec, G., Brodeau, L. & Nycander, J., 2015. Defining a simplified yet ‘realistic’ equation of state for seawater. J. Phys. Oceanogr., 45, 2564–2579.Google Scholar
Roquet, F., Madec, G., McDougall, T. J. & Barker, P. M., 2015. Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard. Oce. Model., 90, 29–43.Google Scholar
Rossby, C.-G., 1936. Dynamics of steady ocean currents in the light of experimental fluid dynamics. Papers Phys. Oceanog. Meteor., 5, 1–43.Google Scholar
Rossby, C.-G., 1938. On the mutual adjustment of pressure and velocity distributions in certain simple current systems, II. J. Mar. Res., 5, 239–263.Google Scholar
Rossby, C.-G., 1939. Relations between variation in the intensity of the zonal circulation and the displacements of the semi-permanent centers of action. J. Marine Res., 2, 38–55.Google Scholar
Rossby, C.-G., 1940. Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc., 66,suppl., 68–87.Google Scholar
Rossby, C.-G., 1949. On the nature of the general circulation of the lower atmosphere. In G. P, Kuiper, Ed., The Atmospheres of the Earth and Planets, pp. 16–48. University of Chicago Press.
Rossby, H. T., 1965. On thermal convection driven by non-uniform heating from below: an experimental study. Deep-Sea Res., 12, 9–16.Google Scholar
Ruddick, B., McDougall, T. & Turner, J., 1989. The formation of layers in a uniformly stirred density gradient. Deep-Sea Res., 36, 597–609.Google Scholar
Rudnick, D. L. & Weller, R. A., 1993. Observations of superinertial and near-inertial wind-driven flow. J. Phys. Oceanogr., 23, 2351–2359.Google Scholar
Ruelle, D. & Takens, F., 1971. On the nature of turbulence. Commun. Math. Phys., 20, 167–192.Google Scholar
Salmon, R., 1980. Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 10, 25–52.Google Scholar
Salmon, R., 1983. Practical use of Hamilton's principle. J. Fluid Mech., 132, 431–444.Google Scholar
Salmon, R., 1990. The thermocline as an internal boundary layer. J. Mar. Res., 48, 437–469.Google Scholar
Salmon, R., 1998. Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.
Saltzman, B., 1962. Finite amplitude free convection as an initial value problem. J. Atmos. Sci., 19, 329–341.Google Scholar
Samelson, R. M., 1999a. Geostrophic circulation in a rectangular basin with a circumpolar connection. J. Phys. Oceanogr., 29, 3175–3184.Google Scholar
Samelson, R. M., 1999b. Internal boundary layer scaling in ‘two-layer’ solutions of the thermocline equations. J. Phys. Oceanogr., 29, 2099–2102.Google Scholar
Samelson, R. M., 2004. Simple mechanistic models of middepth meridional overturning. J. Phys. Oceanogr., 34, 2096–2103.Google Scholar
Samelson, R. M., 2011. The Theory of Large-Scale Ocean Circulation. Cambridge University Press, 193 pp.
Samelson, R. M. & Tziperman, E., 2001. Instability of the chaotic ENSO: the growth-phase predictability barrier. J. Atmos. Sci., 58, 3613–3625.Google Scholar
Samelson, R. M. & Vallis, G. K., 1997. Large-scale circulation with small diapycnal diffusion: the twothermocline limit. J. Mar. Res., 55, 223–275.Google Scholar
Sandström, J. W., 1908. Dynamische Versuche mit Meerwasser (Dynamical experiments with seawater). Annal. Hydrogr. Marit. Meteorol., 36, 6–23.Google Scholar
Sandström, J. W., 1916. Meteorologische Studien im Schwedischen Hochgebirge (Meteorological studies in the Swedish high mountains). Goteborgs Kungl. Vetenskaps-och Vitterhets-Samhalles, Handingar, 27, 1–48.Google Scholar
Sarachik, E. S. & Cane, M. A., 2010. The El Niño-Southern Oscillation Phenomenon. Cambridge University Press, 369 pp.
Sarkisyan, A. & Ivanov, I., 1971. Joint effect of baroclinicity and relief as an important factor in the dynamics of sea currents. Izv. Akad. Nauk Atmos. Ocean. Phys., 7, 116–124.Google Scholar
Scaife, A., Butchart, N., Warner, C. D. & Swinbank, R., 2002. Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59, 1473–1489.Google Scholar
Scaife, A. & James, I. N., 2000. Response of the stratosphere to interannual variability of tropospheric planetary waves. Quart. J. Roy. Meteor. Soc., 126, 275–297.Google Scholar
Schär, C., 1993. A generalization of Bernoulli's theorem. J. Atmos. Sci., 50, 1437–1443.Google Scholar
Schmidtko, S., Johnson, G. C. & Lyman, J. M., 2013. MIMOC: a global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. (Oceans), 118, 4, 1658–1672.Google Scholar
Schmitz, W. J., 1995. On the interbasin-scale thermohaline circulation. Rev. Geophysics, 33, 151–173.Google Scholar
Schneider, E. K., 1977. Axially symmetric steady-state models of the basic state for instability and climate studies. Part II: nonlinear calculations. J. Atmos. Sci., 34, 280–297.Google Scholar
Schneider, T., Held, I. & Garner, S. T., 2003. Boundary effects in potential vorticity dynamics. J. Atmos. Sci., 60, 1024–1040.Google Scholar
Schneider, T., O'Gorman, P. A. & Levine, X. J., 2010. Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001.Google Scholar
Schneider, T. & Sobel, A., Eds., 2007. The Global Circulation of the Atmosphere. Princeton University Press.
Schneider, T. & Walker, C. C., 2006. Self-organization of atmospheric macroturbulence into critical states of weak nonlinearity. J. Atmos. Sci., 63, 1569–1586.Google Scholar
Schoeberl, M. R., 1978. Stratospheric warmings: observations and theory. Revs. Geophys. Space Phys., 16, 521–538.Google Scholar
Schubert, W. H., Hausman, S. A., Garcia, M., Ooyama, K. V. & Kuo, H.-C., 2001. Potential vorticity in a moist atmosphere. J. Atmos. Sci., 58, 3148–3157.Google Scholar
Schubert, W. H. & Masarik, M. T., 2006. Potential vorticity aspects of the MJO. Dyn. Atmos. Oceans, 42, 127–151.Google Scholar
Schubert, W. H., Ruprecht, E., Hertenstein, R., Nieto Ferreira, R. et al., 2004. English translations of twentyone of Ertel's papers on geophysical fluid dynamics. Meteor. Z., 13, 527–576.Google Scholar
Scinocca, J. F. & Shepherd, T. G., 1992. Nonlinear wave-activity conservation laws and Hamiltonian structure for the two-dimensional anelastic equations. J. Atmos. Sci., 49, 5–28.Google Scholar
Scorer, R. S. & Ludlam, F. H., 1951. Bubble theory of penetrative convection. Q. J. Mech. Appl. Maths, 3, 107–112.Google Scholar
Scott, R. B., 2001. Evolution of energy and enstrophy containing scales in decaying, two-dimensional turbulence with friction. Phys. Fluids, 13, 2739–2742.Google Scholar
Scott, R. K. & Dritschel, D. G., 2012. The structure of zonal jets in geostrophic turbulence. J. Fluid Mech., 711, 576–598.Google Scholar
Scott, R. K. & Haynes, P. H., 1998. Internal interannual variability of the extratropical stratospheric circulation: The low latitude flywheel. Quart. J. Roy. Meteor. Soc., 124, 2149–2173.Google Scholar
Scott, R. K. & Haynes, P. H., 2000. Internal vacillations in stratosphere-only models. J. Atmos. Sci., 57, 2333– 2350.Google Scholar
Shapiro, M. & Grønas, S., Eds., 1999. The Life Cycles of Extratropical Cyclones. American Meteorological Society, 359 pp.
Shepherd, T. G., 1983. Mean motions induced by baroclinic instability in a jet. Geophys. Astrophys. Fluid Dyn., 27, 35–72.Google Scholar
Shepherd, T. G., 1987. A spectral view of nonlinear fluxes and stationary-transient interaction in the atmosphere. J. Atmos. Sci., 44, 1166–1179.Google Scholar
Shepherd, T. G., 1990. Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys., 32, 287–338.Google Scholar
Shepherd, T. G., 1993. A unified theory of available potential energy. Atmosphere–Ocean, 31, 1–26.Google Scholar
Sherwood, S. C., Roca, R., Weckwerth, T. M. & Andronova, N. G., 2010. Tropospheric water vapor, convection and climate. Rev. Geophys., 48, RG2001.Google Scholar
Shutts, G. J., 1983. Propagation of eddies in diffluent jet streams: eddy vorticity forcing of blocking flow fields. Quart. J. Roy. Meteor. Soc., 109, 737–761.Google Scholar
Silberstein, L., 1896. O tworzeniu sie wirow, w plynie doskonalym (On the creation of eddies in an ideal fluid). W Krakaowie Nakladem Akademii Umiejetnosci (Proc. Cracow Acad. Sci.), 31, 325–335.Google Scholar
Simmonds, J. G. & Mann, J. E., 1998. A First Look at Perturbation Theory. Dover Publications, 139 pp.
Simmons, A. & Hoskins, B., 1978. The life-cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414–432.Google Scholar
Sjoberg, J. P. & Birner, T., 2012. Transient tropospheric forcing of sudden stratospheric warmings. J. Atmos. Sci., 69, 3420–3432.Google Scholar
Smagorinsky, J., 1953. The dynamical influences of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere. Quart. J. Roy. Meteor. Soc., 79, 342–366.Google Scholar
Smagorinsky, J., 1969. Problems and promises of deterministic extended range forecasting. Bull. Am. Meteor. Soc., 50, 286–311.Google Scholar
Smith, K. S., Boccaletti, G., Henning, C. C., Marinov, I. et al., 2002. Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469, 13–48.Google Scholar
Smith, K. S. & Vallis, G. K., 1998. Linear wave and instability properties of extended range geostrophic models. J. Atmos. Sci., 56, 1579–1593.Google Scholar
Smith, K. S. & Vallis, G. K., 2001. The scales and equilibration of mid-ocean eddies: freely evolving flow. J. Phys. Oceanogr., 31, 554–571.Google Scholar
Smith, K. S. & Vallis, G. K., 2002. The scales and equilibration of mid-ocean eddies: forced-dissipative flow. J. Phys. Oceanogr., 32, 1669–1721.Google Scholar
Smith, L. M. & Waleffe, F., 1999. Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids, 11, 1608–1622.Google Scholar
Smith, R. B., 1979. The influence of mountains on the atmosphere. In B, Saltzman, Ed., Advances in Geophysics, vol. 21, pp. 87–230. Academic Press.
Smith, R. K., 1997. On the theory of CISK. Quart. J. Roy. Meteor. Soc., 123, 407–418.Google Scholar
Sobel, A. & Maloney, E., 2013. Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187–192.Google Scholar
Sobel, A. H., Nilsson, J. & Polvani, L., 2001. The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 3650–3665.Google Scholar
Spall, M. A., 2000. Generation of strong mesoscale eddies by weak ocean gyres. J. Mar. Res., 58, 97–116.Google Scholar
Spiegel, E. A. & Veronis, G., 1960. On the Boussinesq approximation for a compressible fluid. Astrophys. J., 131, 442–447. (Correction: Astrophys. J., 135, 655–656).Google Scholar
Squire, H., 1933. On the stability of three-dimensional disturbances of viscous flow between parallel walls. Proc. Roy. Soc. Lond. A, 142, 621–628.Google Scholar
Srinivasan, K. & Young, W., 2012. Zonostrophic instability. J. Atmos. Sci., 69, 1633–1656.Google Scholar
Stammer, D., 1997. Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27, 1743–1769.Google Scholar
Starr, V. P., 1948. An essay on the general circulation of the Earth's atmosphere. J. Meteor., 78, 39–43.Google Scholar
Starr, V. P., 1968. Physics of Negative Viscosity Phenomena. McGraw-Hill, 256 pp.
Stechmann, S. N. & Ogrosky, H. R., 2014. The Walker circulation, diabatic heating, and outgoing longwave radiation. Geophys. Res. Lett., 41, 9097–9105.Google Scholar
Steers, J. A., 1962. An Introduction to the Study of Map Projections. Univ. of London Press, 288 pp.
Stern, M. E., 1963. Trapping of low frequency oscillations in an equatorial boundary layer. Tellus, 15, 246– 250.Google Scholar
Stevens, D. P. & Ivchenko, V. O., 1997. The zonal momentum balance in an eddy-resolving generalcirculation model of the southern ocean. Quart. J. Roy. Meteor. Soc., 123, 929–951.Google Scholar
Stewart, G. R., 1941. Storm. Random House, 349 pp.
Stewartson, K., 1977. The evolution of the critical layer of a Rossby wave. Geophys. Astrophys. Fluid Dyn., 9, 185–200.Google Scholar
Stips, A., 2005. Dissipation measurement: theory. In H. Z, Baumert, J, Simpson, & J, Sündermann, Eds., Marine Turbulence. Cambridge University Press.
Stommel, H., 1958. The abyssal circulation. Deep-Sea Res., 5, 80–82.Google Scholar
Stommel, H., 1960. Wind-drift near the equator. Deep-Sea Res., 6, 298–302.Google Scholar
Stommel, H., 1961. Thermohaline convection with two stable regimes of flow. Tellus, 13, 224–230.Google Scholar
Stommel, H. & Arons, A. B., 1960. On the abyssal circulation of the world ocean—I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6, 140–154.Google Scholar
Stommel, H., Arons, A. B. & Faller, A. J., 1958. Some examples of stationary planetary flow patterns in bounded basins. Tellus, 10, 179–187.Google Scholar
Stommel, H. & Moore, D. W., 1989. An Introduction to the Coriolis Force. Columbia University Press, 297 pp.
Stommel, H. & Webster, J., 1963. Some properties of the thermocline equations in a subtropical gyre. J. Mar. Res., 44, 695–711.Google Scholar
Stone, P. H., 1972. A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci., 29, 405–418.Google Scholar
Stone, P. H., 1978. Baroclinic adjustment. J. Atmos. Sci., 35, 561–571.Google Scholar
Stone, P. H. & Nemet, B., 1996. Baroclinic adjustment: a comparison between theory, observations, and models. J. Atmos. Sci., 53, 1663–1674.Google Scholar
Straub, D. N., 1993. On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23, 776–782.Google Scholar
Straub, D. N., 1999. On thermobaric production of potential vorticity in the ocean. Tellus A, 51, 314–325.Google Scholar
Suarez, M. & Schopf, P., 1988. A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 323–3287.Google Scholar
Sukhatme, J. & Young, W. R., 2011. The advection–condensation model and water-vapour probability density functions. Quart. J. Roy. Meteor. Soc., 137, 1561–1572.Google Scholar
Sukoriansky, S., Dikovskaya, N. & Galperin, B., 2007. On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci., 64, 3312–3327.Google Scholar
Sutcliffe, R. C., 1939. Cyclonic and anticylonic development. Quart. J. Roy. Meteor. Soc., 65, 518–524.Google Scholar
Sutcliffe, R. C., 1947. A contribution to the problem of development. Quart. J. Roy. Meteor. Soc., 73, 370–383.Google Scholar
Sutherland, B., 2010. Internal Gravity Waves. Cambridge University Press, 394 pp.
Swallow, J. C. & Worthington, V., 1961. An observation of a deep countercurrent in the western North Atlantic. Deep-Sea Res., 8, 1–19.Google Scholar
Tailleux, R., 2016. Neutrality versus materiality: A thermodynamic theory of neutral surfaces. Fluids, 1, 32.Google Scholar
Takahashi, M., 1996. Simulation of the stratospheric quasi-biennial oscillation using a general circulation model. Geophys. Res. Lett., 23, 661–664.Google Scholar
Talley, L., 1988. Potential vorticity distribution in the North Pacific. J. Phys. Oceanogr., 18, 89–106.Google Scholar
Talley, L. D., Pickard, G., Emery, W. J. & Swift, J. H., 2011. Descriptive Physical Oceanography: An Introduction. Academic press, 555 pp.
Taylor, G. I., 1921a. Diffusion by continuous movements. Proc. London Math. Soc., 2 (20), 196–211.Google Scholar
Taylor, G. I., 1921b. Experiments with rotating fluids. Proc. Roy. Soc. Lond. A, 100, 114–121.Google Scholar
Tennekes, H. & Lumley, J. L., 1972. A First Course in Turbulence. The MIT Press, 330 pp.
Tesserenc De Bort, L. P., 1902. Variations de la température de l'air libre dans la zone comprise 8 km et 13 km d'altitude (Variations in the temperature of the free air in the zone between 8 km and 13 km of altitude). C. R. Hebd. Séances Acad. Sci., 134, 987–989.Google Scholar
Thompson, A. F., Stewart, A. L. & Bischoff, T., 2016. A multibasin residual-mean model for the global overturning circulation. J. Phys. Oceanogr., 46, 2583–2604.Google Scholar
Thompson, A. F. & Young, W. R., 2006. Scaling baroclinic eddy fluxes: vortices and energy balance. J. Phys. Oceanogr., 36, 720–738.Google Scholar
Thompson, P. D., 1957. Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9, 275–295.Google Scholar
Thompson, R. O. R. Y., 1971. Why there is an intense eastward current in the North Atlantic but not in the South Atlantic. J. Phys. Oceanogr., 1, 235–237.Google Scholar
Thompson, R. O. R. Y., 1980. A prograde jet driven by Rossby waves. J. Atmos. Sci., 37, 1216–1226.Google Scholar
Thomson, J., 1892. Bakerian lecture. On the grand currents of atmospheric circulation. Phil. Trans. Roy. Soc. Lond. A, 183, 653–684.Google Scholar
Thomson, W. (Lord Kelvin), 1869. On vortex motion. Trans. Roy. Soc. Edinburgh, 25, 217–260.Google Scholar
Thomson, W. (Lord Kelvin), 1871. Hydrokinetic solutions and observations. Phil. Mag. and J. Science, 42, 362–377.Google Scholar
Thomson, W. (Lord Kelvin), 1879. On gravitational oscillations of rotating water. Proc. Roy. Soc. Edinburgh, 10, 92–100.Google Scholar
Thorncroft, C. D., Hoskins, B. J. & McIntyre, M. E., 1993. Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 17–55.Google Scholar
Thorpe, A. J., Volkert, H. & Ziemianski, M. J., 2003. The Bjerknes' circulation theorem: a historical perspective. Bull. Am. Meteor. Soc., 84, 471–480.Google Scholar
Thual, O. & McWilliams, J. C., 1992. The catastrophe structure of thermohaline convection in a twodimensional fluid model and a comparison with low-order box models. Geophys. Astrophys. Fluid Dyn., 64, 67–95.Google Scholar
Thuburn, J., 2017. Use of the Gibbs thermodynamic potential to express the equation of state in atmospheric models. Quart. J. Roy. Meteor. Soc.. submitted.
Thuburn, J. & Craig, G. C., 1997. GCM tests of theories for the height of the tropopause. J. Atmos. Sci., 54, 869–882.Google Scholar
Thuburn, J. & Craig, G. C., 2000. Stratospheric influence on tropopause height: the radiative constraint. J. Atmos. Sci., 57, 17–28.Google Scholar
Tobias, S. & Marston, J., 2013. Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett., 110, 10, 104502.Google Scholar
Toggweiler, J. R. & Samuels, B., 1995. Effect of Drake Passage on the global thermohaline circulation. Deep- Sea Res., 42, 477–500.Google Scholar
Toggweiler, J. R. & Samuels, B., 1998. On the ocean's large-scale circulation in the limit of no vertical mixing. J. Phys. Oceanogr., 28, 1832–1852.Google Scholar
Toole, J. M., Polzin, K. L. & Schmitt, R. W., 1994. Estimates of diapycnal mixing in the abyssal ocean. Science, 264, 1120–1123.Google Scholar
Tort, M. & Dubos, T., 2014. Dynamically consistent shallow-atmosphere equations with a complete Coriolis force. Quart. J. Roy. Meteor. Soc., 140, 684, 2388–2392.Google Scholar
Tréguier, A. M., Held, I. M. & Larichev, V. D., 1997. Parameterization of quasi-geostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 29, 567–580.Google Scholar
Trenberth, K. E., 1997. The definition of El Niño. Bull. Am. Meteor. Soc., 78, 2771–2777.Google Scholar
Trenberth, K. E. & Caron, J. M., 2001. Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 3433–3443.Google Scholar
Tritton, D. J., 1988. Physical Fluid Dynamics. Oxford University Press, 519 pp.
Truesdell, C., 1951. Proof that Ertel's vorticity theorem holds in average for any medium suffering no tangential acceleration on the boundary. Geofis Pura Appl., 19, 167–169.Google Scholar
Truesdell, C., 1954. The Kinematics of Vorticity. Indiana University Press, 232 pp.
Truesdell, C., 1969. Rational Thermodynamics. McGraw Hill, 208 pp.
Tsang, Y.-K. & Vanneste, J., 2016. Advection-condensation of water vapor in a model of coherent stirring. Submitted to Proc. Roy. Soc. A.
Tudhope, A. W., Chilcott, C. P., McCulloch, M. T., Cook, E. R. et al., 2001. Variability in the El Niño Southern Oscillation through a glacial-interglacial cycle. Science, 291, 1511–1517.Google Scholar
Tung, K. K., 1979. A theory of stationary long waves. Part III: quasi-normal modes in a singular wave guide. Mon. Wea. Rev., 107, 751–774.Google Scholar
Tziperman, E., Stone, L., Cane, M. A. & Jarosh, H., 1994. El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science, 264, 72–73.Google Scholar
Valdes, P. J. & Hoskins, B. J., 1988. Baroclinic instability of the zonally averaged flow with boundary layer damping. J. Atmos. Sci., 45, 1584–1593.Google Scholar
Vallis, G. K., 1982. A statistical dynamical climate model with a simple hydrology cycle. Tellus, 34, 211–227.Google Scholar
Vallis, G. K., 1985. Instability and flow over topography. Geophys. Astrophys. Fluid Dyn., 34, 1–38.Google Scholar
Vallis, G. K., 1988a. Conceptual models of El Niño and the Southern Oscillation. J. Geophys. Res., 93, 13979–13991.Google Scholar
Vallis, G. K., 1988b. Numerical studies of eddy transport properties in eddy-resolving and parameterized models. Quart. J. Roy. Meteor. Soc., 114, 183–204.Google Scholar
Vallis, G. K., 1996. Potential vorticity and balanced equations of motion for rotating and stratified flows. Quart. J. Roy. Meteor. Soc., 122, 291–322.Google Scholar
Vallis, G. K., 2000. Large-scale circulation and production of stratification: effects of wind, geometry and diffusion. J. Phys. Oceanogr., 30, 933–954.Google Scholar
Vallis, G. K. & Maltrud, M. E., 1993. Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 1346–1362.Google Scholar
Vallis, G. K., Zurita-Gotor, P., Cairns, C. & Kidston, J., 2015. The response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 1479–1501.Google Scholar
Vanneste, J. & Shepherd, T. G., 1998. On the group-velocity property for wave-activity conservation laws. J. Atmos. Sci., 55, 1063–1068.Google Scholar
Verkley, W. T. M. & van der Velde, I. R., 2010. Balanced dynamics in the tropics. Quart. J. Roy. Meteor. Soc., 136, 41–49.Google Scholar
Veronis, G., 1960. An approximate theoretical analysis of the equatorial undercurrent. Deep-Sea Res., 6, 318–327.Google Scholar
Veronis, G., 1966a. Wind-driven ocean circulation – Part 1: Linear theory and perturbation analysis. Deep- Sea Res., 13, 17–29.Google Scholar
Veronis, G., 1966b. Wind-driven ocean circulation – Part 2: Numerical solutions of the non-linear problem. Deep-Sea Res., 13, 30–55.Google Scholar
Veronis, G., 1969. On theoretical models of the thermocline circulation. Deep-Sea Res., 31Suppl., 301–323.Google Scholar
Veryard, R. G. & Ebdon, R. A., 1961. Fluctuations in tropical stratospheric winds. Meteor. Mag, 90, 125–143.Google Scholar
Visbeck, M., Marshall, J., Haine, T. & Spall, M., 1997. Specification of eddy transfer coefficients in coarseresolution ocean circulation models. J. Phys. Oceanogr., 27, 381–402.Google Scholar
Von Neumann, J., 1955. Methods in the physical sciences. In L. G, Leary, Ed., The Unity of Knowledge. Doubleday.
Walker, C. & Schneider, T., 2005. Response of idealized Hadley circulations to seasonally varying heating. Geophys. Res. Lett., 32, L06813. doi:10.1029/2004GL022304.Google Scholar
Wallace, J. M., 1973. General circulation of the tropical lower stratosphere. Rev. Geophys., 11, 191–222.Google Scholar
Wallace, J. M., 1983. The climatological mean stationary waves: observational evidence. In B, Hoskins & R. P, Pearce, Eds., Large-Scale Dynamical Processes in the Atmosphere, pp. 27–63. Academic Press.
Wallace, J. M. & Hobbs, P. V., 2006. Atmospheric Science: An Introductory Survey. 2nd edn. Elsevier, 483 pp.
Wallace, J. M. & Holton, J. R., 1968. A diagnostic numerical model of the quasi-biennial oscillation. J. Atmos. Sci., 25, 280–292.Google Scholar
Warn, T., Bokhove, O., Shepherd, T. G. & Vallis, G. K., 1995. Rossby number expansions, slaving principles, and balance dynamics.Quart. J. Roy. Meteor. Soc., 121, 723–739.Google Scholar
Warn, T. & Warn, H., 1976. On the development of a Rossby wave critical level. J. Atmos. Sci., 33, 2021–2024.Google Scholar
Warren, B. A., 1981. Deep circulation of the world ocean. In B. A, Warren & C, Wunsch, Eds., Evolution of Physical Oceanography, pp. 6–41. The MIT Press.
Warren, B. A., 1999. Approximating the energy transport across oceanic sections. J. Geophys. Res., 104, 7915–7920.Google Scholar
Warren, B. A., 2006. The first law of thermodynamics in a salty ocean. Progress in Oceanography, 70, 2, 149–167.Google Scholar
Warren, B. A., LaCasce, J. H. & Robbins, P. E., 1996. On the obscurantist physics of form drag in theorizing about the Circumpolar Current. J. Phys. Oceanogr., 26, 2297–2301.Google Scholar
Wasow, W., 1944. Asymptotic solution of boundary value problems for the differential equation Duke Math J., 11, 405–415.Google Scholar
Watson, A., Vallis, G. K. & Nikurashin, M., 2015. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nature Geosciences, 8, 861–864. doi:10.1038/ngeo2538.Google Scholar
Webb, D. J. & Suginohara, N., 2001. Vertical mixing in the ocean. Nature, 409, 37.Google Scholar
Weinstock, R., 1952. Calculus of Variations. McGraw-Hill. Reprinted by Dover Publications, 1980, 328 pp.
Welander, P., 1959. An advective model of the ocean thermocline. Tellus, 11, 309–318.Google Scholar
Welander, P., 1968. Wind-driven circulation in one- and two-layer oceans of variable depth. Tellus, 20, 1–15.Google Scholar
Welander, P., 1971a. Some exact solutions to the equations describing an ideal-fluid thermocline. J. Mar. Res., 29, 60–68.Google Scholar
Welander, P., 1971b. The thermocline problem. Phil. Trans. Roy. Soc. Lond. A, 270, 415–421.Google Scholar
Welander, P., 1973. Lateral friction in the ocean as an effect of potential vorticity mixing. Geophys. Fluid Dyn., 5, 101–120.Google Scholar
Welander, P., 1986. Thermohaline effects in the ocean circulation and related simple models. In J, Willebrand & D. L. T, Anderson, Eds., Large-scale Transport Processes in Oceans and Atmospheres, pp. 163–200. Reidel.
Wentzel, G., 1926. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik (A generalization of the quantum conditions for the purposes of wave mechanics). Zeit. fur Physic A, 38, 518–529.Google Scholar
Wheeler, M. & Kiladis, G. N., 1999. Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399.Google Scholar
White, A. A., 1977. Modified quasi-geostrophic equations using geometric height as vertical co-ordinate. Quart. J. Roy. Meteor. Soc., 103, 383–396.Google Scholar
White, A. A., 2002. A view of the equations of meteorological dynamics and various approximations. In J, Norbury & I, Roulstone, Eds., Large-Scale Atmosphere-Ocean Dynamics I, pp. 1–100. Cambridge University Press.
White, A. A., 2003. The primitive equations. In J, Holton, J, Pyle, & J, Curry, Eds., Encyclopedia of Atmospheric Science, pp. 694–702. Academic Press.
White, A. A., Hoskins, B. J., Roulstone, I. & Staniforth, A., 2005. Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Quart. J. Roy. Meteor. Soc., 131, 609, 2081–2107.Google Scholar
Whitehead, J. A., 1975. Mean flow generated by circulation on a beta-plane: An analogy with the moving flame experiment. Tellus, 27, 358–364.Google Scholar
Whitehead, J. A., 1995. Thermohaline ocean processes and models. Ann. Rev. Fluid Mech., 27, 89–113.Google Scholar
Whitham, G. B., 1974. Linear and Nonlinear Waves. Wiley-Interscience, 656 pp.
Williams, G. P., 1978. Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci., 35, 1399–1426.Google Scholar
Wittenberg, A. T., 2009. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702. doi:10.1029/2009GL038710.Google Scholar
Wolfe, C. L. & Cessi, P., 2010. What sets the middepth stratification of eddying ocean models? J. Phys. Oceanogr., 40, 1520–1538.Google Scholar
Wolfe, C. L. & Cessi, P., 2011. The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 1795–1810.Google Scholar
World Meteorological Organization, 1957. Definition of the tropopause. WMO Bulletin, 6, 136.
Wunsch, C., 2002. What is the thermohaline circulation? Science, 298, 1179–1180.Google Scholar
Wunsch, C., 2015. Modern Observational Physical Oceanography. Princeton University Press, 481 pp.
Wunsch, C. & Ferrari, R., 2004. Vertical mixing, energy, and the general circulation of the oceans. Ann. Rev. Fluid Mech., 36, 281–314.Google Scholar
Wunsch, C. & Roemmich, D., 1985. Is the North Atlantic in Sverdrup balance? J. Phys. Oceanogr., 15, 1876–1880.Google Scholar
Wyrtki, K., 1952. Der Einfluss des Windes auf den mittleren Wasserstand Der Nordsee und ihren Wasserhausalt (the influence of the wind on the mean sea level and water budget of the north sea). Dtsch. Hydrogr. Z., 5, 21–27.Google Scholar
Wyrtki, K., 1975. El Niño—The dynamic response of the equatorial Pacific ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572–584.Google Scholar
Wyrtki, K., 1985. Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res., 90, 7129–7132.Google Scholar
Wyrtki, K., Magaard, L. & Hager, J., 1976. Eddy energy in oceans. J. Geophys. Res., 81, 2641–2646.Google Scholar
Xu, X., Rhines, P. B., Chassignet, E. P. & Schmitz, W. J., 2015. Spreading of Denmark Strait overflow water in the western subpolar North Atlantic: insights from eddy-resolving simulations with a passive tracer. J. Phys. Oceanogr., 45, 2913–2932.Google Scholar
Yaglom, A. M., 1994. A. N. Kolmogorov as a fluid mechanician and founder of a school in turbulence research. Ann. Rev. Fluid Mech., 26, 1–22.Google Scholar
Yanai, M. & Maruyama, T., 1966. Stratospheric wave disturbances in the tropical stratosphere. J. Meteor. Soc. Japan, 44, 291–294.Google Scholar
Yoden, S., 1987. Bifurcation properties of a stratospheric vacillation model. J. Atmos. Sci., 44, 1723–1733.Google Scholar
Yoden, S., 1990. An illustrative model of seasonal and interannual variations of the stratospheric circulation. J. Atmos. Sci., 47, 1845–1853.Google Scholar
Young, W. R., 2010. Dynamic enthalpy, conservative temperature, and the seawater Boussinesq approximation. J. Phys. Oceanogr., 40, 394–400.Google Scholar
Young, W. R., 2012. An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692–707.Google Scholar
Young, W. R. & Rhines, P. B., 1982. A theory of the wind-driven circulation II. Gyres with western boundary layers. J. Mar. Res., 40, 849–872.Google Scholar
Zebiak, S. E. & Cane, M. A., 1987. A model El Niño Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.Google Scholar
Zeng, N., Neelin, J. D. & Chou, C., 2000. A quasi-equilibrium tropical circulation model – implementation and simulation. J. Atmos. Sci., 57, 1767–1796.Google Scholar
Zhang, C., 2005. Madden–Julian oscillation. Rev. Geophys., 43, 1–36.Google Scholar
Zhang, R. & Vallis, G. K., 2007. The role of the bottom vortex stretching on the path of the North Atlantic western boundary current and on the northern recirculation gyre. J. Phys. Oceanogr., 37, 2053–2080.Google Scholar
Zurita-Gotor, P. & Lindzen, R., 2007. Theories of baroclinic adjustment and eddy equilibration. In T, Schneider & A, Sobel, Eds., The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges. Princeton University Press.
Zurita-Gotor, P. & Vallis, G. K., 2009. Equilibration of baroclinic turbulence in primitive equations and quasi-geostrophic models. J. Atmos. Sci., 66, 837–863.Google Scholar
Zurita-Gotor, P. & Vallis, G. K., 2011. Dynamics of mid-latitude tropopause height in an idealized model. J. Atmos. Sci., 68, 823–838.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Geoffrey K. Vallis, University of Exeter
  • Book: Atmospheric and Oceanic Fluid Dynamics
  • Online publication: 09 June 2017
  • Chapter DOI: https://doi.org/10.1017/9781107588417.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Geoffrey K. Vallis, University of Exeter
  • Book: Atmospheric and Oceanic Fluid Dynamics
  • Online publication: 09 June 2017
  • Chapter DOI: https://doi.org/10.1017/9781107588417.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Geoffrey K. Vallis, University of Exeter
  • Book: Atmospheric and Oceanic Fluid Dynamics
  • Online publication: 09 June 2017
  • Chapter DOI: https://doi.org/10.1017/9781107588417.024
Available formats
×