Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-18T01:23:02.913Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2015

Sebastian Reich
Affiliation:
Universität Potsdam, Germany
Colin Cotter
Affiliation:
Imperial College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amezcua, J., Kalnay, E., Ide, K. & Reich, S. (2014), ‘Ensemble transform Kalman–Bucy filters’, Q.J.R. Meteor. Soc. 140, 995–1004.CrossRefGoogle Scholar
Anderson, J. (2007), ‘An adaptive covariance inflation error correction algorithm for ensemble filters’, Tellus 59, 210–224.Google Scholar
Anderson, J. (2010), ‘A non-Gaussian ensemble filter update for data assimilation’, Mon. Wea. Rev. 138, 4186–4198.CrossRefGoogle Scholar
Anderson, J. (2012), ‘Localization and sampling error correction in ensemble Kalman filter data assimilation’, Mon. Wea. Rev. 140, 2359–2371.CrossRefGoogle Scholar
Andrieu, C. & Roberts, G. (2009), ‘The pseudo-marginal approach for efficient Monte-Carlo computations’, Ann. Statist. 37, 697–725.CrossRefGoogle Scholar
Arnold, V. (1989), Mathematical Methods of Classical Mechanics, 2nd edn, Springer-Verlag, New York.
Arulampalam, M., Maskell, S., Gordon, N. & Clapp, T. (2002), ‘A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking’, IEEE Trans. Sign. Process. 50, 174–188.CrossRefGoogle Scholar
Ascher, U. (2008), Numerical Methods for Evolutionary Differential Equations, SIAM, Philadelphia, PA.CrossRefGoogle Scholar
Bain, A. & Crisan, D. (2009), Fundamentals of Stochastic Filtering, Vol. 60 of Stochastic Modelling and Applied Probability, Springer-Verlag, New York.CrossRefGoogle Scholar
Beaumont, M. (2003), ‘Estimation of population growth or decline in genetically monitored populations’, Genetics 164, 1139–1160.Google ScholarPubMed
Benamou, J. & Brenier, Y. (2000), ‘A computational fluid mechanics solution to the Monge–Kantorovitch mass transfer problem’, Numer. Math. 84, 375–393.CrossRefGoogle Scholar
Bengtsson, T., Bickel, P. & Li, B. (2008), ‘Curse of dimensionality revisited: Collapse of the particle filter in very large scale systems’. In IMS Collections, Probability and Statistics: Essays in Honor of David F. Freedman, 2, 316–334.Google Scholar
Bergemann, K. & Reich, S. (2010), ‘A mollified ensemble Kalman filter’, Q.J.R. Meteorolog. Soc. 136, 1636–1643.CrossRefGoogle Scholar
Bergemann, K. & Reich, S. (2012), ‘An ensemble Kalman–Bucy filter for continuous data assimilation’, Meteorolog. Zeitschrift 21, 213–219.CrossRefGoogle Scholar
Bloom, S., Takacs, L., Silva, A.D. & Ledvina, D. (1996), ‘Data assimilation using incremental analysis updates’, Q.J.R. Meteorolog. Soc. 124, 1256–1271.Google Scholar
Bocquet, M. & Sakov, P. (2012), ‘Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems’, Nonlin. Processes Geophys. 19, 383–399.CrossRefGoogle Scholar
Bocquet, M., Pires, C. & Wu, L. (2010), ‘Beyond Gaussian statistical modeling in geophysical data assimilaition’, Mon. Wea. Rev. 138, 2997–3022.CrossRefGoogle Scholar
Breźniak, Z. & Zastawniak, T. (1999), Basic Stochastic Processes, Springer-Verlag, London.CrossRefGoogle Scholar
Bröcker, J. (2012), ‘Evaluating raw ensembles with the continuous ranked probability score’, Q.J.R. Meteorolog. Soc. 138, 1611–1617.CrossRefGoogle Scholar
Bungartz, H.-J. & Griebel, M. (2004), ‘Sparse grids’, Acta Numerica 13, 147–269.CrossRefGoogle Scholar
Caflisch, R. (1998), ‘Monte Carlo and Quasi-Monte Carlo methods’, Acta Numerica 7, 1–49.CrossRefGoogle Scholar
Chen, Y. & Oliver, D. (2013), ‘Levenberg–Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification’, Computational Geoscience 17, 689–703.CrossRefGoogle Scholar
Cheng, Y. & Reich, S. (2013), ‘A McKean optimal transportation perspective on Feynman–Kac formulae with application to data assimilation’., arXiv:1311.6300. To appear in Frontiers in Applied Dynamical Systems, Vol. 1, Springer-Verlag, New York.Google Scholar
Chorin, A. & Hald, O. (2009), Stochastic Tools in Mathematics and Science, 2nd edn, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Chorin, A., Morzfeld, M. & Tu, X. (2010), ‘Implicit filters for data assimilation’, Comm. Appl. Math. Comp. Sc. 5, 221–240.Google Scholar
Coles, S. (2001), An Introduction to Statistical Modeling of Extreme Values, Springer-Verlag, New York.CrossRefGoogle Scholar
Collet, P. & Eckmann, J.-P. (2006), Concepts and Results in Chaotic Dynamics, Springer-Verlag, Berlin.Google Scholar
Crisan, D. & Xiong, J. (2010), ‘Approximate McKean–Vlasov representation for a class of SPDEs’, Stochastics 82, 53–68.CrossRefGoogle Scholar
Daley, R. (1993), Atmospheric Data Analysis, Cambridge University Press, Cambridge.Google Scholar
Daum, F. & Huang, J. (2011), ‘Particle filter for nonlinear filters’. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference, IEEE, New York, 5920–5923.Google Scholar
del Moral, P. (2004), Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications, Springer-Verlag, New York.CrossRefGoogle Scholar
Doucet, A., de Freitas, N. & Gordon, N., editors (2001), Sequential Monte Carlo Methods in Practice, Springer-Verlag, Berlin.
Emerik, A. & Reynolds, A. (2012), ‘Ensemble smoother with multiple data assimilation’, Computers & Geosciences 55, 3–15.Google Scholar
Engl, H., Hanke, M. & Neubauer, A. (2000), Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht.
Evans, L. (1998), Partial Differential Equations, American Mathematical Society, Providence, RI.
Evans, L. (2013), An Introduction to Stochastic Differential Equations, American Mathematical Society, Providence, RI.
Evensen, G. (2006), Data Assimilation. The Ensemble Kalman Filter, Springer-Verlag, New York.
Frei, M. & Küunsch, H. (2013), ‘Mixture ensemble Kalman filters’, Computational Statistics and Data Analysis 58, 127–138.CrossRefGoogle Scholar
Gardiner, C. (2004), Handbook of Stochastic Methods, 3rd edn, Springer-Verlag.
Gneiting, T., Balabdaoui, F. & Raftery, A. (2007), ‘Probabilistic forecasts, calibration and sharpness’, J. R. Statist. Soc. B 69, 243–268.CrossRefGoogle Scholar
Golub, G. & Loan, C.V. (1996), Matrix Computations, 3rd edn, Johns Hopkins University Press, Baltimore, MD.
González-Tokman, C. & Hunt, B. (2013), ‘Ensemble data assimilation for hyperbolic systems’, Physica D 243, 128–142.CrossRefGoogle Scholar
Hand, D. (2008), Statistics: A Very Short Introduction, Oxford University Press, Oxford.
Hastie, T., Tibshirani, R. & Friedman, J. (2009), The Elements of Statistical Learning, 2nd edn, Springer-Verlag, New York.
Higham, D. (2001), ‘An algorithmic introduction to numerical simulation of stochastic differential equations’, SIAM Review 43, 525–546.CrossRefGoogle Scholar
Hoke, J. & Anthes, R. (1976), ‘The initialization of numerical models by a dynamic relaxation technique’, Mon. Wea. Rev. 104, 1551–1556.2.0.CO;2>CrossRefGoogle Scholar
Holtz, M. (2011), Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Hunt, B., Kostelich, E. & Szunyogh, I. (2007), ‘Efficient data assimilation for spatialtemporal chaos: A local ensemble transform Kalman filter’, Physica D 230, 112–137.CrossRefGoogle Scholar
Janjić, T., McLaughlin, D., Cohn, S. & Verlaan, M. (2014), ‘Convervation of mass and preservation of positivity with ensemble-type Kalman filter algorithms’, Mon. Wea. Rev. 142, 755–773.CrossRefGoogle Scholar
Jazwinski, A. (1970), Stochastic Processes and Filtering Theory, Academic Press, New York.Google Scholar
Julier, S.J. & Uhlmann, J.K. (1997), ‘A new extension of the Kalman filter to nonlinear systems’. In Proc. AeroSense: 11th Int. Symp. Aerospace/Defense Sensing, Simulation and Controls, pp. 182–193.Google Scholar
Kaipio, J. & Somersalo, E. (2005), Statistical and Computational Inverse Problems, Springer-Verlag, New York.Google Scholar
Kalnay, E. (2002), Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Katok, A. & Hasselblatt, B. (1995), Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Kitanidis, P. (1995), ‘Quasi-linear geostatistical theory for inverting’, Water Resources Research 31, 2411–2419.CrossRefGoogle Scholar
Kloeden, P. & Platen, E. (1992), Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Küunsch, H. (2005), ‘Recursive Monte Carlo filter: Algorithms and theoretical analysis’, Ann. Statist. 33, 1983–2021.CrossRefGoogle Scholar
Lasota, A. & Mackey, M. (1994), Chaos, Fractals, and Noise, 2nd edn, Springer-Verlag, New York.CrossRefGoogle Scholar
Law, K., Shukia, A. & Stuart, A. (2014), ‘Analysis of the 3DVAR filter for the partially observed Lorenz ’63 model’, Discrete and Continuous Dynamical Systems A 34, 1061–1078.Google Scholar
Lei, J. & Bickel, P. (2011), ‘A moment matching ensemble filter for nonlinear and non-Gaussian data assimilation’, Mon. Wea. Rev. 139, 3964–3973.CrossRefGoogle Scholar
Lewis, J., Lakshmivarahan, S. & Dhall, S. (2006), Dynamic Data Assimilation: A Least Squares Approach, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Liu, J. (2001), Monte Carlo Strategies in Scientific Computing, Springer-Verlag, New York.Google Scholar
Livings, D., Dance, S. & Nichols, N. (2008), ‘Unbiased ensemble square root filters’, Physica D 237, 1021–1028.CrossRefGoogle Scholar
Lorenz, E. (1963), ‘Deterministic non-periodic flows’, J. Atmos. Sci. 20, 130–141.2.0.CO;2>CrossRefGoogle Scholar
Majda, A. & Harlim, J. (2012), Filtering Complex Turbulent Systems, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
McCann, R. (1995), ‘Existence and uniqueness of monotone measure-preserving maps’, Duke Math. J. 80, 309–323.CrossRefGoogle Scholar
McKean, H. (1966), ‘A class of Markov processes associated with nonlinear parabolic equations’, Proc. Natl. Acad. Sci. USA 56, 1907–1911.CrossRefGoogle Scholar
Meyn, S. & Tweedie, R. (1993), Markov Chains and Stochastic Stability, Springer-Verlag, London.CrossRefGoogle Scholar
Miyoshi, T. (2011), ‘The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter’, Mon. Wea. Rev. 139, 1519–1535.CrossRefGoogle Scholar
Morzfeld, M. & Chorin, A. (2012), ‘Implicit particle filtering for models with partial noise and an application to geomagnetic data assimilation’, Nonlinear Processes in Geophysics 19, 365–382.CrossRefGoogle Scholar
Morzfeld, M., Tu, X., Atkins, E. & Chorin, A. (2012), ‘A random map implementation of implicit filters’, J. Comput. Phys. 231, 2049–2066.CrossRefGoogle Scholar
Moselhy, T.E. & Marzouk, Y. (2012), ‘Bayesian inference with optimal maps’, J. Comput. Phys. 231, 7815–7850.CrossRefGoogle Scholar
Moser, J. (1965), ‘On the volume elements on a manifold’, Trans. Amer. Math. Soc. 120, 286–294.CrossRefGoogle Scholar
Neal, R. (1996), Bayesian Learning for Neural Networks, Springer-Verlag, New York.CrossRefGoogle Scholar
Nerger, L., Pfander, T.J., Schröter, J. & Hiller, W. (2012), ‘A regulated localization scheme for ensemble-based Kalman filters’, Q.J.R. Meteorolog. Soc. 138, 802–812.CrossRefGoogle Scholar
Nocedal, J. & Wright, S. (2006), Numerical Optimization, 2nd edn, Springer-Verlag, New York.Google Scholar
Øksendal, B. (2000), Stochastic Differential Equations, 5th edn, Springer-Verlag, Berlin.Google Scholar
Oliver, D. (1996), ‘On conditional simulation to inaccurate data’, Math. Geology 28, 811–817.CrossRefGoogle Scholar
Oliver, D., He, N. & Reynolds, A. (1996), ‘Conditioning permeability fields on pressure data. Technical Report: presented at the 5th European Conference on the Mathematics of Oil Recovery, Leoben, Austria.Google Scholar
Olkin, I. & Pukelsheim, F. (1982), ‘The distance between two random vectors with given dispersion matrices’, Lin. Alg. and its Applns. 48, 257–263.Google Scholar
Ott, E., Hunt, B., Szunyogh, I., Zimin, A., Kostelich, E., Corazza, M., Kalnay, E., Patil, D. & Yorke, J.A. (2004), ‘A local ensemble Kalman filter for atmospheric data assimilation’, Tellus A 56, 415–428.Google Scholar
Otto, F. (2001), ‘The geometry of dissipative evolution equations: the porous medium equation’, Comm. Part. Diff. Eqs. 26, 101–174.CrossRefGoogle Scholar
Pavliotis, G. (2014), Stochastic Processes and Applications, Springer-Verlag, New York.CrossRefGoogle Scholar
Pele, O. & Werman, M. (2009), ‘Fast and robust earth mover's distances’. In 12th IEEE International Conference on Computer Vision, IEEENew York, pp. 460–467.Google Scholar
Raftery, A. (1995), ‘Bayesian model selection in social research’, Sociological Methodology 25, 111–163.CrossRefGoogle Scholar
Rebeschini, P. & van Handel, R. (2013), ‘Can local particle filters beat the curse of dimensionality?’, arXiv:1301.6585.
Reich, S. (2011), ‘A dynamical systems framework for intermittent data assimilation’, BIT Numer Math 51, 235–249.CrossRefGoogle Scholar
Reich, S. (2012), ‘A Gaussian mixture ensemble transform filter’, Q.J.R. Meteorolog. Soc. 138, 222–233.CrossRefGoogle Scholar
Reich, S. (2013a), ‘A guided sequential Monte Carlo method for the assimilation of data into stochastic dynamical systems’. In Recent Trends in Dynamical Systems, Proceedings in Mathematics and Statistics, 35, Springer-Verlag, Basel, pp. 205–220.CrossRefGoogle Scholar
Reich, S. (2013b), ‘A nonparametric ensemble transform method for Bayesian inference’, SIAM J. Sci. Comput. 35, A2013–A2024.CrossRefGoogle Scholar
Reich, S. & Cotter, C. (2013), ‘Ensemble filter techniques for intermittent data assimilation’. In Large Scale Inverse Problems. Computational Methods and Applications in the Earth Sciences, M. Cullen, M.A.Freitag, S. Kindermann & R.Scheichl, Scheichl, eds, Radon Ser. Comput. Appl. Math., 13, de Gruyter, Berlin, pp. 91–134.Google Scholar
Robert, C. (2001), The Bayesian Choice: From Decision-Theoretic Motivations to Computational Implementations, 2nd edn, Springer-Verlag, New York.Google Scholar
Robert, C. & Casella, G. (2004), Monte Carlo Statistical Methods, 2nd edn, Springer-Verlag, New York.CrossRefGoogle Scholar
Robinson, J. (2001), Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Sakov, P., Oliver, D. & Bertino, L. (2012), ‘An iterative EnKF for strongly nonlinear systems’, Mon. Wea. Rev. 140, 1988–2004.CrossRefGoogle Scholar
Särkkä, S. (2013), Bayesian Filtering and Smoothing, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Simon, D. (2006), Optimal State Estimation, Wiley, New York.CrossRefGoogle Scholar
Smith, K. (2007a), ‘Cluster ensemble Kalman filter’, Tellus 59A, 749–757.Google Scholar
Smith, L. (2007b), Chaos: A Very Short Introduction, Oxford University Press, Oxford.CrossRef
Smith, R. (2014), Uncertainty Quantification, SIAM, Philadelphia, PA.Google Scholar
Stordal, A., Karlsen, H., Nævdal, G., Skaug, H. & Vallés, B. (2011), ‘Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter’, Comput. Geosci. 15, 293–305.CrossRefGoogle Scholar
Strang, G. (1986), Introduction to Applied Mathematics, 2nd edn, Wellesley-Cambridge Press, Wellesley, MA.Google Scholar
Stuart, A. (2010), ‘Inverse problems: a Bayesian perspective’, Acta Numerica 17, 451–559.Google Scholar
Süli, E. & Mayers, D. (2006), An Introduction to Numerical Analysis, Cambridge University Press, Cambridge.Google Scholar
Takens, F. (1981), ‘Detecting strange attractors in turbulence’. In Dynamical Systems and Turbulence. Lecture Notes in Mathematics, 898, Springer-Verlag, Berlin, pp. 366–381.Google Scholar
Tarantola, A. (2005), Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, PA.CrossRefGoogle Scholar
Tijms, H. (2012), Understanding Probability, 3rd edn, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Tippett, M., Anderson, J., Bishop, G., Hamill, T. & Whitaker, J. (2003), ‘Ensemble square root filters’, Mon. Wea. Rev. 131, 1485–1490.2.0.CO;2>CrossRefGoogle Scholar
van Leeuwen, P. (2010), ‘Nonlinear data assimilation in the geosciences: an extremely efficient particle filter’, Q.J.R. Meteorolog. Soc. 136, 1991–1996.CrossRefGoogle Scholar
van Leeuwen, P. & Ades, M. (2013), ‘Efficient fully nonlinear data assimilation for geophysical fluid dynamics’, Computers & Geosciences 55, 16–27.CrossRefGoogle Scholar
Verhulst, F. (2000), Nonlinear Differential Equations and Dynamical Systems, 2nd edn, Springer-Verlag, Berlin.Google Scholar
Villani, C. (2003), Topics in Optimal Transportation, American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
Villani, C. (2009), Optimal Transportation: Old and New, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Wang, X., Bishop, C. & Julier, S. (2004), ‘Which is better, an ensemble of positivenegative pairs or a centered spherical simplex ensemble?’, Mon. Wea. Rev. 132, 1590–1505.2.0.CO;2>CrossRefGoogle Scholar
Yang, T., Mehta, P. & Meyn, S. (2013), ‘Feedback particle filter’, IEEE Trans. Automatic Control 58, 2465–2480.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Sebastian Reich, Universität Potsdam, Germany, Colin Cotter, Imperial College London
  • Book: Probabilistic Forecasting and Bayesian Data Assimilation
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107706804.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Sebastian Reich, Universität Potsdam, Germany, Colin Cotter, Imperial College London
  • Book: Probabilistic Forecasting and Bayesian Data Assimilation
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107706804.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Sebastian Reich, Universität Potsdam, Germany, Colin Cotter, Imperial College London
  • Book: Probabilistic Forecasting and Bayesian Data Assimilation
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107706804.012
Available formats
×