Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-07T21:15:26.607Z Has data issue: false hasContentIssue false

15 - Fabrication, characterization and applications of optical antenna arrays

from Part II - MODELING, DESIGN AND CHARACTERIZATION

Published online by Cambridge University Press:  05 March 2013

Daniel Dregely
Affiliation:
University of Stuttgart
Jens Dorfmüller
Affiliation:
University of Stuttgart
Mario Hentschel
Affiliation:
University of Stuttgart and Max Planck Institute for Solid State Research
Harald Giessen
Affiliation:
University of Stuttgart
Mario Agio
Affiliation:
European Laboratory for Nonlinear Spectroscopy (LENS) and National Institute of Optics (INO-CNR)
Andrea Alù
Affiliation:
University of Texas, Austin
Get access

Summary

Introduction

For radio engineers it is a common task to combine several antennas to form an antenna array. This gives them several degrees of freedom for shaping the radiation pattern according to their needs. By selecting different types of individual elements, their relative position in space, their respective orientation, and the amplitude and phase of the induced currents, one can engineer the radiated beam properties [262]. In the new research field of optical nanoantennas, the possibilities of arraying antennas have hardly been explored yet. This is mainly due to the challenges in fabricating and driving the arrays, as well as the yet limited possibilities of characterization. Nevertheless, application of RF antenna array concepts into optical regimes promises tremendous technological advances: increasing the directivity and gain aids in distant signal transmission and reception (similarly to the concepts used in satellite communication), coupling nanoemitters and nanoreceivers to antenna arrays enhances their efficiency with the potential of bridging the size gap between optical radiation and subwavelength emitters or detectors and employing phase retarders allows for steering of optical beams.

In this chapter, we introduce the concepts of array theory and scale them to optical frequencies. We start with a short introduction on RF antenna array theory and discuss the differences that have to be accounted for at optical frequencies. Subsequently, the possibility of beam shaping at optical frequencies is discussed. Numerical and experimental studies on a closely spaced 1D array of plasmonic dipole antennas, whose design is analogous to the well-known RF Yagi–Uda antenna [233], give insight into the dynamics of the optical modes that are supported by the antenna structure.

Type
Chapter
Information
Optical Antennas , pp. 256 - 276
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×