Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-24T17:28:26.471Z Has data issue: false hasContentIssue false

4 - High-frequency devices

Published online by Cambridge University Press:  05 March 2013

Sorin Voinigescu
Affiliation:
University of Toronto
Get access

Summary

This chapter reviews the DC, high-frequency, and noise characteristics of field-effect and heterojunction bipolar transistors and discusses the figures of merit and design methodology of high-frequency passive devices such as inductors, transformers, transmission lines, and fixed and variable capacitors (varactors).

Definition of an active device

We define as active an electronic device whose power gain is larger than 1 or 0dB. The power gain is made possible by the conversion of DC power into time-varying power [1].

As illustrated in Figure 4.1, high-frequency active devices can be divided into two large families: field-effect and bipolar devices. In the field-effect category, we include the MOSFET and its derivatives (LDMOS, SOI, FinFET, nanowire FET) and the high electron mobility transistor (HEMT) with its pseudomorphic (p-HEMT) and metamorphic (m-HEMT) derivatives. MOSFETs are currently fabricated in silicon with some silicon-germanium present in the source and drain regions of p-MOSFETs in advanced technology nodes. Commercial HEMTs are realized in several III-V material systems, the most popular being GaAs/InGaAs, InP/InGaAs, and AlGaN/GaN.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Estreich, Donald, Device Chapter, IEEE CSICS-2009 Primer Course, October 2009.
Jan, C. -H., Agostinelli, M., Deshpande, H., El-Tanani, M. A., Hafez, W., Jalan, U., Janbay, L., Kang, M., Lakdawala, H., Lin, J., Lu, Y. -L., Mudanai, S., Park, J., Rahman, A., Rizk, J., Shin, W. -K., Soumyanath, K., Tashiro, H., Tsai, C., VanDerVoorn, P., Yeh, J. -Y., and Bai, P., “RF CMOS technology scaling in high-k/metal gate era for RF SoC (system-on-chip) applications,” IEEE IEDM Digest, pp. 604–607, December 2010, and M. Bohr, “Evolution of scaling from the homogeneous era to the heterogeneous era,” IEEE IEDM Digest, pp.1.1.4, December 2011.
Long, Stephen, IEEE CSICS-2009 Primer Course, October 2009, Materials chapter.
Semiconductor materials data base Ioffe Institute,
Voinigescu, S. P., Laskin, E., Sarkas, I., Yau, K. H. K., Shahramian, S., Hart, A., Tomkins, A., Chevalier, P., Hasch, J., Garcia, P., Chantre, A., and Sautreuil, B., “Silicon D-band wireless transceivers and applications,” IEEE APMC, pp. 1857–1864, December 2010.
Dambrine, G., Happy, H., Danneville, F., and Cappy, A., “A new method for on-wafer noise measurement,” IEEE MTT, 41(3): 375–381, March 1993.Google Scholar
Dickson, T. O., Yau, K. H. K., Chalvatzis, T., Mangan, A., Beerkens, R., Westergaard, P., Tazlauanu, M., Yang, M. -T., and Voinigescu, S. P., “The invariance of the characteristic current densities in nanoscale MOSFETs and its impact on algorithmic design methodologies and design porting of Si(Ge) (Bi)CMOS high-speed building blocks,” IEEE JSSC, 41(8): 1830–1845, August 2006.Google Scholar
Voinigescu, S. P., Dickson, T. O., Gordon, M., Lee, C., Yao, T., Mangan, A., Tang, K., and Yau, K., “RF and millimeter-wave IC design in the nano-(Bi)CMOS Era,” in Cai, Will Z. (ed.), Si-based Semiconductor Components for Radio-Frequency Integrated Circuits (RF IC), Transworld Research Network, 2006, pp. 33–62.
Yao, T., Gordon, M. Q., Tang, K. K. W., Yau, K. H. K., Yang, M. -T., Schvan, P., and Voinigescu, S. P., “Algorithmic design of CMOS LNAs and PAs for 60GHz Radio,” IEEE JSSC, 42(5): 1044–1057, May 2007.Google Scholar
Atalla, John and Kahng, Dawon, US Patent no. 3102230, filed in 1960, issued in 1963.
Taur, Y. and , T. H. Ning in Fundamentals of Modern VLSI Devices, Cambridge University Press, 2nd Edition, 2009.
International Technology Roadmap for Semiconductors (ITRS) 2003.
Stern, F. and Howard, W. E., “Properties of semiconductor surface inversion layers in the electric quantum limit,” Phys. Rev. 163: 816–835, 1967.Google Scholar
Thompson, S. E., Armstrong, M., Auth, C., Alavi, M., Buehler, M., Chau, R., Cea, S., Ghani, T., Glass, G., Hoffman, T., Jan, C. -H., Kenyon, C., Klaus, J., Kuhn, K., Ma, Z., Mcintyre, B., Mistry, K., Murthy, A., Obradovic, B., Nagisetti, R., Nguyen, P., Sivakumar, S., Shaheed, R., Shifren, L., Tufts, B., Tyagi, S., Bohr, M., and El-Mansy, Y., “A 90nm logic technology featuring strained-silicon,” IEEE ED, 51: 1790–1797, 2004.Google Scholar
Liu, W., MOSFET Models for Spice Simulation, John Wiley, 2001
Tasker, P. J. and Hughes, B., “Importance of source and drain resistance to the maximum fT of millimeter-wave MODFETs,” IEEE EDL, 10(7): 291–293, July 1989.Google Scholar
Ladbrooke, P. H., MMIC Design: GaAs FETs and HEMTs, Boston: Artech House, 1989, Chapter 6.
Voinigescu, S. P., Nicolson, S. T., Khanpour, M., Tang, K. K. W., Yau, K. H. K., Seyedfathi, N., Timonov, A., Nachman, A., Eleftheriades, G., Schvan, P., and Yang, M. T., “CMOS SOCs at 100GHz: system architectures, device characterization, and IC design examples,” IEEE ISCAS, pp. 1971–1974, May 2007.
Tomkins, A., Aroca, R. A., Yamamoto, T., Nicolson, S. T., Doi, Y., and Voinigescu, S. P., “A Zero-IF 60GHz 65nm CMOS transceiver with direct BPSK modulation demonstrating up to 6Gb/s data rates over a 2m wireless link,” IEEE JSSC, 44(8): 2085–2099, August 2009.Google Scholar
Van Der Ziel, A., Noise: Sources Characterization, Measurement, Englewood Cliffs, NJ: Prentice-Hall, 1970.
Pucel, R. A., Haus, H. A., and Statz, H., “Signal and noise properties of gallium arsenide microwave field effect transistors,” Advances in Electronics and Electron Physics (AEEPS), 38, New York: Academic Press, 1975.
Pospieszalski, M. W., “Interpreting Transistor Noise,” IEEE Microwave Mag., 11(6): 61–69, 2010.Google Scholar
Yau, K. H. K., Khanpour, M., Yang, M. -T., Schvan, P., and Voinigescu, S. P., “On-die source-pull for the characterization of the W-band noise performance of 65nm general purpose (GP) and low power (LP) n-MOSFETs,” IEEE IMS, Digest, pp. 773–776, June 2009.
Danneville, F., Happy, H., Dambrine, G., Belquin, J. -M., and Cappy, A., “Microscopic noise modeling and macroscopic noise models: how good a connection?” IEEE ED, 41(5): 779–786, May 1994.Google Scholar
Maas, S. A., Noise, Boston: Artech House, Boston, 2005, Chapter 4.
Nicolson, S., Ph.D. Thesis, ECE Department, University of Toronto, September 2008.
Kraemer, M., “Design of a low-power 60GHz transceiver front-end and behavioral modeling and implementation of its key building blocks in 65nm CMOS,” Ph.D. thesis, LAAS, Toulouse, France, December 2010.
Laskin, E., Khanpour, M., Nicolson, S. T., Tomkins, A., Garcia, P., Cathelin, A., Belot, D., and Voinigescu, S. P., “Nanoscale CMOS transceiver design in the 90–170 GHz Range,” IEEE MTT, 57: 3477–3490, December 2009.Google Scholar
Dennard, R. H., Gaensslen, F. H., Yu, H. N., Rideout, V. L., Bassous, E., and LeBlanc, A. R., “Design of ion-implanted MOSFETs with very small physical dimensions,” IEEE JSSC, 9: 256–258, 1974.Google Scholar
Mayberry, M., “Intel's tri-gate transistor to enable next era in energy efficient performance,” Intel Press Release Presentation Slides, June 6, 2006.
Young, I., IEEE IEDM Short Course, December 2011.
Bohr, M., “Evolution of scaling from the homogeneous era to the heterogeneous era,” IEEE IEDM Digest, pp. 1.1.4, December 2011.
Asbeck, P. M. et al., “Heterojunction bipolar transistor technology,” in Wang, C. T. (ed.), Introduction to Semiconductor Technology: GaAs and Related Compounds, New York: Wiley-Interscience, 1990, pp. 170–230.
Bolognesi, C. R., Matine, N., Dvorak, M. W., Xu, X. G., and Watkins, S. P., “InP/GaAsSb/InP DHBT's with high f T and f MAX for wireless communication applications,” IEEE GaAs IC Symposium, pp. 63–66. October 1999.
Avenier, G., Chevalier, P., Pruvost, S., Bouvier, J., Troillard, G., Depoyan, L., Buczko, M., Montusclat, S., Margain, A., T Nicolson, S., Yau, K. H. K., Gloria, D., Diop, M., Loubet, N., Derrier, N., Leyris, C., Boret, S., Dutartre, D., Voinigescu, S. P., and Chantre, A., “0.13μm SiGe BiCMOS technology fully dedicated to mm-wave applications,” IEEE JSSC, 44(8): 2312–2321, September 2009.Google Scholar
Voinigscu, S. P., Laskin, E., Nicolson, S. T., Khanpour, M., Tang, K., Yau, K., Tomkins, A., Chevalier, P., and Garcia, P., “80–160 GHz CMOS and SiGe BiCMOS building block design,” IEEE IMS/RFIC 2008 Workshop WSB, “Advances in Circuit Design for Wideband Millimeter Wave Applications,” Atlanta, June 15, 2008.
Kroemer, H., “Two integral relations pertaining to the electron transport through a bipolar transistor with non-uniform energy bandgap in the base region,” Solid State Electron, 28: 1101–1103, 1985.Google Scholar
K Yau, K. H., Chevalier, P., Chantre, A., and Voinigescu, S. P., “Characterization of the noise parameters of SiGe HBTs in the 70–170 GHz range,” IEEE MTT, 59: 1983–2001, August 2011.Google Scholar
Voinigescu, S. P., Maliepaard, M. C., Showell, J. L., Babcock, G., Marchesan, D., Schroter, M., Schvan, P., and Harame, D. L., “A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design,” IEEE JSSC, 32(9): 1430–1438, 1997.Google Scholar
Voinigescu, S. P., Chalvatzis, T., Yau, K. H. K., Hazneci, A., Garg, A., Shahramian, S., Yao, T., Gordon, M., Dickson, T. O., Laskin, E., Nicolson, S. T., Carusone, A. C., Tchoketch-Kebir, L., Yuryevich, O., Ng, G., Lai, B., and Liu, P., “SiGe BiCMOS for analog, high-speed digital and millimetre-wave applications beyond 50GHz,” IEEE BCTM Digest, pp. 223–230, October 2006.
Chevalier, P., Barbalat, B., Laurens, M., Vandelle, B., Rubaldo, L., Geynet, B., Voinigescu, S. P., Dickson, T. O., Zerounian, N., Chouteau, S., Dutartre, D., Monroy, A., Sautreui1, B., Aniel, F., Dambrine, G., and Chantre, A., “High-speed SiGe BiCMOS technologies: 120nm status and end-of-roadmap challenges,” Si Monolithic Integrated Circuits in RF Systems, pp. 18–23, January 2007.
Urteaga, M., Pierson, R., Hacker, J., Seo, M., Griffith, Z., Young, A., Rowell, P., and Rodwell, M. J. W., “InP HBT integrated circuit technology for terahertz frequencies,” IEEE CSICS Digest, pp. 1–4, October 2010.
Mimura, T. et al., “A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs heterojunctions,” Jpn J. Appl. Phys., 19: L225–L227, 1980.Google Scholar
Mead, C. A., “Schottky barrier field-effect transistor,” Proc. IEEE, 54: 307–308, February 1966.Google Scholar
Danneville, F., “Microwave noise and FET devices,” IEEE Microwave Mag., 11(6): 53–60, October 2010.Google Scholar
Dingle, R., Stormer, H. L., Gossard, A. C., and Wiegmann, W., “Electron mobilities in modulation doped GaAs-AlGaAs heterojunction superlattices,” Appl. Phys. Lett., 33: 665, 1978.Google Scholar
Estreich, D. B., “Basics of compound semiconductor ICs,” IEEE CSICS, Primer Course, October 2010.
McPherson, D. S., Pera, F., Tazlauanu, M., and Voinigescu, S. P., “A 3V fully differential distributed limiting driver for 40Gb/s optical transmission systems,” IEEE JSSC, 38(9): 1485–1496, 2003.Google Scholar
Tabatabaei, S., IEEE CSICS Short Course, October 2009.
Deal, W., Leong, K., Mei, X. B., Sarkozy, S., Radisic, V., Lee, J., Liu, P. H., Yoshida, W., Zhou, J., and Lange, M., “Scaling of InP HEMT cascode integrated circuits to THz frequencies,” IEEE CSICS Digest, pp. 195–198, October 2010.
Voinigescu, S. P., McPherson, D. S., Pera, F., Szilagyi, S., Tazlauanu, M., and Tran, H., “A comparison of silicon and III-V technology performance and building block implementations for 10 and 40Gb/s optical networking ICs,” IJHSES, 13(1), and book chapter in Compound Semiconductor Integrated Circuits, pp. 27–58, 2003.Google Scholar
Pospieszalski, M. W., “Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence,” IEEE MTT, 37: 1340–1350, 1989.Google Scholar
Albrecht, J. D. and Chang, T., “DARPA's nitride electronic next generation technology program,” IEEE CSICS Digest, pp. 7–10, October 2010.
Dubuc, D., Tournier, T., Telliez, I., Parra, T., Boulanger, C., and Graffeuil, J., “High quality factor and high self-resonant frequency monolithic inductor for millimeter-wave Si-based IC′s,” IEEE MTT-S Digest, pp.193–196, June 2002.
Cao, Y., Groves, R. A., Huang, X., Zamdmer, N. D., Plouchart, J. -O., Wachnik, R. A., King, Tsu-Jae, and Hu, C., “Frequency-independent equivalent-circuit model for on-chip spiral inductors,” IEEE JSSC, 38: 419–426, March 2003.Google Scholar
Dickson, T. O., LaCroix, M. -A., Boret, S., Gloria, D., Beerkens, R., and Voinigescu, S. P., “30–100GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits,” IEEE MTT, 53(1): 123–133, 2005.Google Scholar
Dickson, T. O. and Voinigescu, S. P., “Low-power circuits for a 10.7-to-86 Gb/s serial transmitter in 130nm SiGe BiCMOS,” IEEE JSSC, 42(10): 2077–2085, October 2007.Google Scholar
Voinigescu, S. P., Laskin, E., Sarkas, I., Yau, K. H. K., Shahramian, S., Hart, A., Tomkins, A., Chevalier, P., Hasch, J., Garcia, P., Chantre, A., and Sautreuil, B., “Silicon D-band wireless transceivers and applications,” IEEE, APMC, pp.1857–1864, December 2010.
Kenneth, H. Yau, K., “On the metrology of nanoscale silicon transistors above 100GHz,” Ph.D. Thesis, ECE Department, University of Toronto 2011.
Harame, D., IEEE IEDM Short Course, December 2002.
Aroca, R. A., Tomkins, A., Doi, Y., Yamamoto, T., and Voinigescu, S. P., “Circuit performance characterization of digital 45nm CMOS technology for applications around 110GHz,” IEEE VLSI Circuits Symposium Digest, pp.162–163, Honolulu, June 2008.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • High-frequency devices
  • Sorin Voinigescu, University of Toronto
  • Book: High-Frequency Integrated Circuits
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139021128.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • High-frequency devices
  • Sorin Voinigescu, University of Toronto
  • Book: High-Frequency Integrated Circuits
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139021128.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • High-frequency devices
  • Sorin Voinigescu, University of Toronto
  • Book: High-Frequency Integrated Circuits
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139021128.005
Available formats
×