Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-15T16:07:00.546Z Has data issue: false hasContentIssue false

6 - Analytical Solutions of Ordinary Differential Equations

from III - ORDINARY DIFFERENTIAL EQUATIONS

Published online by Cambridge University Press:  05 April 2013

Tomas B. Co
Affiliation:
Michigan Technological University
Get access

Summary

In this chapter, we discuss the major approaches to obtain analytical solutions of ordinary differential equations. We begin with the solutions of first-order differential equations. Several first-order differential equations can be transformed into two major solution approaches: the separation of variables approach and the exact differential approach. We start with a brief review of both approaches, and then we follow them with two sections on how to reduce other problems to either of these methods. First, we discuss the use of similarity transformations to reduce differential equations to become separable. We show that these transformations cover other well-known approaches, such as homogeneous-type differential equations and isobaric differential equations, as special cases. The next section continues with the search for integrating factors that would transform a given differential equation to become exact. Important special cases of this approach include first-order linear differential equations and the Bernoulli equations (after some additional variable transformation).

Next, we discuss the solution of second-order differential equations. We opted to focus first on the nonlinear types, leaving the solution of linear second-order differential equations to be included in the later sections that handle high-order linear differential equations. The approaches we consider are those that would reduce the order of the differential equations, with the expectation that once they are first-order equations, techniques of the previous sections can be used to continue the solution process. Specifically, we use a change of variables to handle the cases in which either the independent variable or dependent variable are explicitly absent in the differential equation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×