Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-15T20:50:05.573Z Has data issue: false hasContentIssue false

13 - Disorder: localization and exceptions

Published online by Cambridge University Press:  05 June 2012

Philip Phillips
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

A problem that has always been central to solid state physics is the insulator–metal transition. The question to answer here is why some materials conduct and others do not. Metals are characterized by a non-zero dc conductivity σ(0) at zero temperature, whereas σ(0) = 0 in an insulator. There are currently three standard models that describe a transition between these two extremes. Anderson (A1958) was first to point out that scattering from a static but random potential can disrupt metallic conduction and lead to an abrupt localization of the electronic eigenstates. Mott (M1949), on the other hand, proposed that an insulating state can obtain even in a material such as NiO which possesses a partially filled valence band. The insulating state arises from strong electron correlations which induce a gap at the Fermi energy. The closing of the gap, signaling the onset of a metallic state, results typically in the intermediate-coupling regime in which the kinetic energy effects can destroy the ordering tendencies of the potential energy. Finally, a structural transition in which the lattice periodicity doubles can also thwart metallic transport. While all of these mechanisms are of considerable interest in their own right, our focus in this chapter will be the disorder-driven insulator–metal or Anderson transition.

We start by reviewing the essential physics and some of the key controversies surrounding the disorder-induced localization transition. Two controversies we address are the role of perturbation theory and whether or not the conductivity is continuous in the vicinity of the Anderson transition.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AAT1973] Abou-chacra, R., Anderson, P. W., and Thouless, D. J., J. Phys. C 6, 1734 (1973).CrossRef
[A1979] Abrahams, E., Abrahams, P. W., Licciardello, D. C., and Ramakrishnan, T. V., Phys. Rev. Lett. 42, 673 (1979).CrossRef
[A1981] Alexander, S., Bernasconi, J., Schneider, W. R., and Orbach, R., Rev. Mod. Phys. 53, 175 (1981).CrossRef
[A1980] Altshuler, B. L., Aronov, A. G., Khmel'nitskii, D. E., and Larkin, A. I., in Quantum Theory of Solids, ed. Lifshits, I. M. (MIR Publishers, Moscow, 1980).Google Scholar
[A1958] Anderson, P. W., Phys. Rev. 109, 1492 (1958).CrossRef
[A1992] Anderson, P. W., Science 256, 1526 (1992).CrossRef
[BK1998] Belitz, D. and Kirkpatrick, T. R., Phys. Rev. B 58, 8214 (1998).CrossRef
[B1999] Bellani, V., Diez, E., Hey, R., et al., Phys. Rev. Lett. 82, 2159 (1999).
[B1982] Bergmann, G., Phys. Rev. B 25, 2937 (1982).CrossRef
[BG1995] Blachly, M. A. and Giordano, N., Phys. Rev. B 51, 12537 (1995).CrossRef
[B1963] Borland, R. E., Proc. R. Soc. London Ser. A 274, 529 (1963).CrossRef
[B1992] Bovier, A., J. Phys. A 25, 1021 (1992).CrossRef
[DO1979] Dolan, G. J. and Osheroff, D. D., Phys. Rev. Lett. 43, 721 (1979).CrossRef
[DJ2000] Dultz, S. C. and Jiang, H. W., Phys. Rev. Lett. 84, 4689 (2000).CrossRef
[DWP1990] Dunlap, D. H., Wu, H.-L., and Phillips, P., Phys. Rev. Lett. 65, 88 (1990).CrossRef
[EC1970] Economou, E. N. and Cohen, M. H., Phys. Rev. Lett. 24, 1445 (1970).CrossRef
[E1996] Ephron, D. E., Yazdani, A., Kapitulnik, A., and Beasley, M., Phys. Rev. Lett. 76, 529 (1996).CrossRef
[FFG1955] Feher, G., Fletcher, R. C., and Gere, E. A., Phys. Rev. 100, 1784 (1955).CrossRef
[F1990] Fisher, M. P. A., Grinstein, G., and Girvin, S., Phys. Rev. Lett. 64, 587 (1990).CrossRef
[F1989] Flores, J. C., J. Phys. Condens. Matt. 1, 8471 (1989).CrossRef
[GM1998] Goldman, A. M. and Markovic, N., Physics Today 51, 39 (1998).CrossRef
[H1998] Hanien, Y., Meirav, U., Shahar, D., et al., Phys. Rev. Lett. 80, 1288 (1998).CrossRef
[HP1990] Hebard, A. F. and Paalanen, M. A., Phys. Rev. Lett. 65, 927 (1990).CrossRef
[I2000] Ilani, S., Yacoby, A., Mahalu, D., and Shtrikman, H., Phys. Rev. Lett. 84, 3133 (2000).CrossRef
[I1986] Imry, Y., Europhys. Lett. 1, 249 (1986).CrossRef
[J1989] Jaeger, H. M., Haviland, D. B., Orr, B. G., and Goldman, A. M., Phys. Rev. B 40, 182 (1989).CrossRef
[JK1986] Johnston, R. and Kramer, B., Z. Phys. B 63, 273 (1986).CrossRef
[K1996] Kravchenko, S. V., Simonian, D., Sarachik, M. P., Mason, W., and Furneaux, J. E., Phys. Rev. Lett. 77, 4938 (1996).CrossRef
[LN1966] Langer, J. S. and Neal, T., Phys. Rev. Lett. 16, 984 (1966).CrossRef
[LR1985] Lee, P. A. and Ramakrishnan, T. V., Rev. Mod. Phys. 57, 287 (1985).CrossRef
[LT1975] Licciardello, D. C. and Thouless, D. J., J. Phys. C 8, 4157 (1975).CrossRef
[LG1987] Lin, J. J. and Giordano, N., Phys. Rev. B 35, 1071 (1987).CrossRef
[MWP1997] Martin, I., Wan, Y., and Phillips, P., Phys. Rev. Lett. 78, 114 (1997).CrossRef
[MK1999] Mason, N. and Kapitulnik, A., Phys. Rev. Lett. 82, 5341 (1999).CrossRef
[M1997] McKenzie, R. H., Science 278, 820 (1997).CrossRef
[MJW1997] Mohanty, P., Jariwala, E. M. Q., and Webb, R. A., Phys. Rev. Lett. 78, 3366 (1997).CrossRef
[M1949] Mott, N. F., Proc. Phys. Soc. London Sect. A 62, 416 (1949).CrossRef
[M1972] Mott, N. F., Phil. Mag. 26, 1015 (1972).CrossRef
[MT1961] Mott, N. F. and Twose, W. D., Adv. Phys. 10, 107 (1961).CrossRef
[M1990] Muttalib, K. A., Phys. Rev. Lett. 65, 745 (1990).CrossRef
[P1987] Pendry, J. B., J. Phys. C 20, 733 (1987).CrossRef
[P1993] Phillips, P., Ann. Rev. Phys. Chem. 44, 115 (1993).CrossRef
[P1998] Phillips, P., Wan, Y., Martin, I., Knysh, S., and Dalidovich, D., Nature 395, 253 (1998).CrossRef
[PF2005] Punnoose, A. and Finkel, A. M.'stein, Science 310, 289 (2005).CrossRef
[PFW1997] Popovic, D., Fowler, A. B., and Washburn, S., Phys. Rev. Lett. 79, 1543 (1997).CrossRef
[S1999] Sachdev, S., Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999).Google Scholar
[SK1999] Sarachik, M. P. and Kravchenko, S. V., Proc. Natl. Acad. Sci. 96, 5900 (1999).CrossRef
[S1998] Simmons, M. Y., Hamilton, A. R., Peppe, M., et al., Phys. Rev. Lett. 80, 1292 (1998).CrossRef
[SE1984] Soukoulis, C. M. and Economou, E. N., Phys. Rev. Lett. 52, 565 (1984).CrossRef
[T1982] Thomas, G. A., Ootuka, Y., Katsumoto, S., Kobayashi, S., and Sasaki, W., Phys. Rev. B 25, 4288 (1982).CrossRef
[T1977] Thouless, D. J., Phys. Rev. Lett. 39, 1167 (1977).CrossRef
[VW1980] Vollhardt, D. and Wölfle, P., Phys. Rev. Lett. 45, 482 (1980).CrossRef
[W1976] Wegner, F., Z. Phys. B 25, 327 (1976).CrossRef
[WGP1992] Wu, H.-L., Goff, W. E., and Phillips, P., Phys. Rev. B 45, 1623 (1992).CrossRef
[YK1995] Yazdani, A. and Kapitulnik, A., Phys. Rev. Lett. 74, 3037 (1995).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×