Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-26T06:35:33.559Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2015

Sow-Hsin Chen
Affiliation:
Massachusetts Institute of Technology
Piero Tartaglia
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, G., and Gibbs, J. H. 1965. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys., 43, 139.Google Scholar
Alatas, A., Leu, B.M., Zhao, J., Yavas, H., Toellner, T. S., and Alp, E. E. 2011. Improved focusing capacity for inelastic x-ray spectrometer at 3-ID of the APS: a combination of toroidal and Kirkpatrick–Baez (KB) mirror. Nucl. Instrum. Methods Phys. Res. A, 649, 166–168.Google Scholar
Alley, W.E., and Alder, B.J. 1983. Generalized transport coefficients for hard spheres. Phys.Rev. A, 27, 3158–3173.Google Scholar
Anderson, P. W. 1995. Through the glass lightly. Science, 267, 1615–1616.Google Scholar
Anderson, V.J., and Lekkerkerker, H. N. V. 2002. Insights into phase transition kinetics from colloid science. Nature, 416, 811–815.Google Scholar
Angell, C. A., and Kanno, H. 1976. Density maxima in high-pressure supercooled water and liquid silicon dioxide. Science, 193, 1121–1122.Google Scholar
Azuah, R.T., Kneller, L.R., Qiu, Y., Tregenna-Piggott, P.L.W, Brown, C.M., Copley, J. R. D., and Dimeo, R. M. 2009. DAVE: a comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl. Inst. Stan. Technol., 114, 341.Google Scholar
Bafile, U., Verkerk, P., Barocchi, F., de Graaf, L. A., Suck, J.-B., and Mutka, H. 1990. Onset of depature from linearized hydrodynamic behavior in argon gas studied with neutron Brillouin scattering. Phys. Rev. Lett., 65, 2394–2397.Google Scholar
Ball, P. 2000. Life's Matrix: A Biography of Water. New York: Farrar, Straus and Giroux.
Ball, P. 2008. Water as an active constituent in cell biology. Chem. Rev., 108, 74–108.Google Scholar
Balucani, U., and Zoppi, M. 1994. Dynamics of the Liquid State. Oxford: Clarendon Press.
Bansil, R., Berger, T., Toukan, K., Ricci, M. A., and Chen, S.-H. 1986. A molecular dynamics study of the OH stretching vibrational spectrum of liquid water. Chem. Phys. Lett., 132, 165–172.Google Scholar
Bartsch, E., Eckert, T., Pies, C., and Sillescu, H. 2002. The effect of free polymer on the glass transition dynamics of microgel colloids. J. Non-Cryst. Solids, 307–310, 802–811.Google Scholar
Baxter, R. J. 1967. Method of solution of the Percus–Yevick, hypernetted-chain, or similar equations. Phys. Rev., 154, 170–174.Google Scholar
Baxter, R.J. 1968a. Ornstein–Zernike relation for a disordered fluid. Australian J. Phys., 21, 563–570.Google Scholar
Baxter, R. J. 1968b. Percus–Yevick equation for hard spheres with surface adhesion. J. Chem. Phys., 49, 2770.Google Scholar
Bee, M. 1988. Quasielastic Neutron Scattering. Philadelphia, PA: Adam Hilger.
Bellissent-Funel, M.-C., Longeville, S., Zanotti, J. M., and Chen, S.-H. 2000. Experimental observation of the alpha relaxation in supercooled water. Phys. Rev. Lett., 85, 3644–3647.Google Scholar
Bellissent-Funel, M. C., Chen, S.-H., and Zanotti, J. M. 1995. Single-particle dynamics of water molecules in confined space. Phys.Rev. E, 51, 4558–4569.Google Scholar
Belloni, L. 1986. Electrostatic interactions in colloidal solutions: comparison between primitive and one-component models. J. Chem. Phys., 85, 519.Google Scholar
Bengtzelius, U., Götze, W., and Sjölander, A. 1984. Dynamics of supercooled liquids and the glass transition. J. Phys. C, 17, 5915.Google Scholar
Berendsen, J. C., Grigera, J. R., and Straatsma, T. P. 1987. The missing term in effective pair potentials. J. Chem. Phys., 91, 6269–6271.Google Scholar
Beresford-Smith, B., and Chan, D. Y. C. 1982. Highly asymmetric electrolytes: A model for strongly interacting colloidal systems. Chem. Phys. Lett., 92, 474–478.Google Scholar
Bergenholtz, J., and Fuchs, M. 1999a. Gel transitions in colloidal suspensions. J. Phys. Condens. Matter, 11, 10171–10182.Google Scholar
Bergenholtz, J., and Fuchs, M. 1999b. Nonergodicity transitions in colloidal suspensions with attractive interactions. Phys.Rev.E, 59, 5706–5715.Google Scholar
Berne, B.J., Pechukas, P., and Harp, G. D. 1968. Molecular reorientation in liquids and gases. J. Chem. Phys., 49, 3125.Google Scholar
Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L., El Masri, D., L'Hote, D., Ladieu, F., and Pierno, M. 2005. Direct experimental evidence of a growing length scale accompanying the glass transition. Science, 310, 1797–1800.Google Scholar
Bertrand, C. E., and Anisimov, M. A. 2011. Peculiar thermodynamics of the second critical point in supercooled water. J. Phys. Chem., B115, 14099–14111.Google Scholar
Bertrand, C. E., Zhang, Y., and Chen, S.-H. 2013a. Deeply-cooled water under strong confinement: neutron scattering investigations and the liquid–liquid critical point hypothesis. Phys. Chem. Chem. Phys., 15, 721–745.Google Scholar
Bertrand, C. E., Liu, K.-H., Mamontov, E., and Chen, S.-H. 2013b. Hydration-dependent dynamics of deeply cooled water under strong confinement. Phys. Rev., E87, 042312.Google Scholar
Bianchi, E., Largo, J., Tartaglia, P., Zaccarelli, E., and Sciortino, F. 2006. Phase diagram of patchy colloids: towards empty liquids. Phys. Rev. Lett., 97, 168301.Google Scholar
Bianchi, E., Tartaglia, P., La Nave, E., and Sciortino, F. 2007. Fully solvable equilibrium self-assembly process: fine-tuning the clusters size and the connectivity in patchy particle systems. J. Phys. Chem. B, 111, 11765–11769.Google Scholar
Binder, K., and Kob, W. 2011. Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics. World Scientific.
Binder, K., Virnau, P., Wilms, D., and Winkler, A. 2011. Spurious character of singularities associated with phase transitions in cylindrical pores. Eur. Phys. J. Special Topics, 197, 227–241.Google Scholar
Blum, L. 1980. Primitive electrolytes in the mean spherical approximation. In: Theoretical Chemistry: Advances and Perspectives, Vol. 5. New York: Academic Press pp. 1–65.
Blum, L., and Høye, J. S. 1978. Solution of the Ornstein–Zernike equation with Yukawa closure for a mixture. J. Stat. Phys., 19, 319–324.Google Scholar
Boon, J. P., and Yip, S. 1980. Molecular Hydrodynamics. New York: McGraw-Hill.
Boonyaratanakornkit, B. B., Park, C. B., and Clark, D. S. 2002. Pressure effects on intraand intermolecular interactions within proteins. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology, 1595, 235–249.Google Scholar
Born, B., Weingartner, H., Brandermann, E., and Havenith, M. 2009. Observation of the onset of collective network moions. J. Am. Chem. Soc., 131, 3752–3755.Google Scholar
Boue, L., Hentschel, H. G. E., Ilyin, V., and Procaccia, L. I. 2011. Statistical mechanics of glass formation in molecular liquids with OTP as an example. J. Phys. Chem. B, 115, 14301–14310.Google Scholar
Brambilla, G., El Masri, D., Pierno, M., Berthier, L., Cipelletti, L., Petekidi, G., and Schofield, A. B. 2009. Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition. Phys. Rev. Lett., 102, 085703.Google Scholar
Brovchenko, I., and Oleinikova, A. 2008. Interfacial and Confined Water. New York: Elsevier.
Burkel, E. 1999. Inelastic Scattering of X-rays with Very High Energy Resolution. Berlin: Springer-Verlag.
Burkel, E. 2000. Phonon spectroscopy by inelastic x-ray scattering. Rep. Prog. Phys., 63, 171–232.Google Scholar
Cabane, B., and Duplessix, R. 1982. Organization of surfactant micelles adsorbed on a polymer molecule in water: a neutron scattering study. J. Phys., 43, 1529–1542.Google Scholar
Caliskan, G., Kisliuk, A., and Sokolov, A. P. 2002. Dynamic transition in lysozyme: role of a solvent. Journal ofNon-Crystalline Solids, 307, 868–873.Google Scholar
Caliskan, G., Briber, R. M., Thirumalai, D., Garcia-Sakai, V., Woodson, S. A., and Sokolov, A. P. 2006. Dynamic transition in tRNA is solvent induced. J. Am. Chem. Soc., 128, 32–33.Google Scholar
Cametti, C., Codastefano, P., Tartaglia, P., Rouch, J., and Chen, S.-H. 1990. Theory and experiment of electrical conductivity and percolation locus in water-in-oil microemulsions. Phys. Rev. Lett., 64, 1461–1464.Google Scholar
Cardinaux, F., Gibaud, T., Stradner, A., and Schurtenberger, P. 2007. Interplay between spinodal decomposition and glass formation in proteins exhibiting short-range attractions. Phys. Rev. Lett., 99, 118301.Google Scholar
Careri, G., Gratton, E., Yang, P.-H., and Rupley, J. A. 1980. Correlation of IR spectroscopic, heat capacity, diamagnetic susceptibility and enzymatic measurements in lysozyme power. Nature, 284, 572–573.Google Scholar
Carnahan, N. F., and Starling, K. E. 1969. Equation of state for nonattracting rigid spheres. J. Chem. Phys., 51, 635–636.Google Scholar
Carpineti, M., and Giglio, M. 1992. Spinodal-type dynamics in fractal aggregation of colloidal clusters. Phys. Rev. Lett., 68, 3327.Google Scholar
Cerveny, S., Colmenero, J., and Algerià, A. 2006. Comment on: ‘Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water’. Phys. Rev. Lett., 97, 189802.Google Scholar
Chalikian, T.V., Voelker, J., Anafi, D., and Breslauer, K.J. 1997. The native and the heat-induced denatured states of τ-chymotrypsinogen A: thermodynamic and spectroscopic studies. J. Mol. Biol., 274, 237–252.Google Scholar
Chandler, D. 1987. Introduction to Modern Statistical Mechanics. Oxford: Oxford University Press.
Chandler, D. 2005. Interfaces and the driving force of hydrophobic assembly. Nature, 437, 640–647.Google Scholar
Chandler, D., Weeks, J. D., and Andersen, H. C. 1983. Van der Waals picture of liquids, solids, and phase transformations. Science, 220, 787–794.Google Scholar
Chang, J., and Sillescu, H. 1997. Heterogeneity at the glass transition: translational and rotational self-diffusion. J. Phys. Chem. B, 101, 8794–8801.Google Scholar
Chen, S.-H. 1971. Physical Chemistry: An Advanced Treatise, Vol. 8a. New York: Academic Press.
Chen, S.-H. 1986. Small angle neutron scattering studies of the structure and interaction in micellar and microemulsion systems. Ann. Rev. Phys. Chem., 37, 351–399.Google Scholar
Chen, S.-H. 1991. Quasi-elastic and inelastic neutron scattering and molecular dynamics of water at supercooled temperature. In Dore, J. C., and Teixeira, J. (eds), Hydrogen Bonded Liquids, vol. 329. NATO ASI Series pp. 289–332.
Chen, S.-H., and Lin, T.L. 1986. Thermal Neutron Scattering. New York: Academic Press.
Chen, S.-H., and Sheu, E. Y. 1990. Micellar Solution and Microemulsions. Berlin: Springer-Verlag.
Chen, S.-H., and Teixeira, J. 1986. Structure and fractal dimension of protein-detergent complexes. Phys. Rev. Lett., 57, 2583–2586.Google Scholar
Chen, S.-H., and Yip, S. 1976. Neutron molecular spectroscopy. Phys. Today, 29, 32.Google Scholar
Chen, S.-H., Lefevre, Y., and Yip, S. 1973. Kinetic theory of collision line narrowing in pressurized hydrogen gas. Phys. Rev. A, 8, 3163.Google Scholar
Chen, S.-H., Lai, C. C., Rouch, J., and Tartaglia, P. 1982. Critical phenomena in a binary mixture of n- hexane and nitrobenzene. Analysis of viscosity and light-scattering data. Phys.Rev.A, 27, 1086.Google Scholar
Chen, S.-H., Toukan, K., Loong, C.-K., Price, D. L., and Teixeira, J. 1984. Hydrogen-bond spectroscopy of water by neutron scattering. Phys. Rev. Lett., 53, 1360–1363.Google Scholar
Chen, S.-H., Rouch, J., Sciortino, F., and Tartaglia, P. 1994. Static and dynamic properties of water-in-oil microemulsions near the critical and percolation points. J. Phys. Condens. Matter, 6, 10855–10883.Google Scholar
Chen, S.-H., Liao, C., Sciortino, F., Gallo, P., and Tartaglia, P. 1999. Models for single-particle dynamics in supercooled water. Phys.Rev.E, 59, 6708–6714.Google Scholar
Chen, S.-H., Liao, C.-Y., Huang, H.-W., Weiss, T.M., Bellisent-Funel, M. C., and Sette, F. 2001. collective dynamics in fully hydrated phospholipid bilayers studied by inelastic X-ray scattering. Phys. Rev. Lett., 86, 740–743.Google Scholar
Chen, S.-H., Chen, W. R., and Mallamace, F. 2003. The glass-to-glass transition and its end point in a copolymer micellar system. Science, 300, 619.Google Scholar
Chen, S.-H., Liu, L., Chu, X.-Q., Zhang, Y., Fratini, E., Baglioni, P., Faraone, A., and Mamontov, E. 2006a. Experimental evidence of fragile-to-strong dynamic crossover in DNA hydration water. J. Chem. Phys., 125, 171103.Google Scholar
Chen, S.-H., Liu, L., Fratini, E., Baglioni, P., Faraone, A., and Mamontov, E. 2006b. Observation of fragile-to-strong dynamic crossover in protein hydration water. Proc. Natl. Acad. Sci. USA, 103, 9012–9016.Google Scholar
Chen, S.-H., Liu, L., and Faraone, A. 2006c. Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water [Reply to Comment]. Phys. Rev. Lett., 97, 189803.Google Scholar
Chen, S.-H., Mallamace, F., Mou, C.-Y., Broccio, M., Corsaro, C., Farone, A., and Liu, L. 2006d. The violation of Stokes-Einstein relation in supercooled water. Proc. Natl. Acad. Sci. USA, 103, 12974–12978.Google Scholar
Chen, S.-H., Broccio, M., Liu, Y., Fratini, E., and Baglioni, P. 2007. The two-Yukawa model and its applications: the cases of charged proteins and copolymer micellar solutions. J. Appl. Cryst., 40, s321–s326.Google Scholar
Chen, S.-H., Mallamace, F., Liu, L., Liu, D., Chu, X.-Q., Zhang, Y., Kim, C., Faraone, A., Mou, C.-Y., Fratini, E., Baglioni, P., KolesnikovA, I. A, I., and Garcia-Sakai, V. 2008. Dynamic crossover phenomenon in confined supercooled water and its relation to the existence of a liquid-liquid critical point in water. AIP Conference Proceedings, 982, 39–52.Google Scholar
Chen, S.-H., Chu, X.-Q., Lagi, M., Liu, D., Chu, X.-C., Zhang, Y., Kim, C., Farone, A., Mou, C.-Y., Fratini, E., Baglioni, P., KolesnikovA, I. A, I., and Garcia-Sakai, V. 2009a. Dynamical coupling between a globular protein and its hydration water studied by neutron scattering and MD simulation. In: WPI-AIMR-2009 Proceedings.
Chen, S.-H., Zhang, Y., Lagi, M., S.-H., Chong, Baglioni, P., and Mallamace, F. 2009b. Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory. J. Phys.: Condens. Matter, 21, 504102.Google Scholar
Chen, S.-H., Zhang, Y., Lagi, M., Chu, X.-Q., Liu, L., Faraone, A., Fratini, E., and Baglioni, P. 2010a. The dynamic response function T (Q, t) of confined supercooled water and its relation to the dynamic crossover phenomenon. Z. Phys. Chem., 224, 109–131.Google Scholar
Chen, S.-H., Lagi, M., Chu, X.-Q., Zhang, Y., Kim, C., Faraone, A., Fratini, E., and Baglioni, P. 2010b. Dynamics of a globular protein and its hydration water studied by neutron scattering and MD simulations. Spectroscopy: Biomedical Applications, 24, 1–24.Google Scholar
Chen, S.-H., Wang, Z., Kolesnikov, A.I., Zhang, Y., and Liu, K.H. 2013. Search for the first-order liquid-to-liquid phase transition in low-temperature confined water by neutron scattering. AIP Conference Proc., 1518, 77–85.Google Scholar
Chen, W.-R., Chen, S.-H., and Mallamace, F. 2002. Small-angle neutron scattering study of the temperature-dependent attractive interaction in dense L64 copolymer micellar solutions and its relation to kinetic glass transition. Phys. Rev. E, 66, 021403.Google Scholar
Chiang, W.-S., Fratini, E., Baglioni, P., Liu, D., and Chen, S.-H. 2012. Microstructure determination of calcium-silicate-hydrate globules by small-angle neutron scattering. J. Phys. Chem. C, 116, 5055–5061.Google Scholar
Chiew, Y. C., and Glandt, E. D. 1983. Percolation behaviour of permeable and of adhesive spheres. J. Phys. A: Math. Gen., 16, 2599.Google Scholar
Chong, S.-H. 2008. Connections of activated hopping processes with the breakdown of the Stokes–Einstein relation and with aspects of dynamical heterogeneities. Phys. Rev. E, 78, 041501.Google Scholar
Chong, S.-H., Chen, S.-H., and Mallamace, F. 2009. A possible scenario for the fragile-to-strong dynamic crossover predicted by the extended mode-coupling theory for glass transition. J. Phys. Condens. Matter, 21, 504101.Google Scholar
Chu, X.-Q., Kolesnikov, A. I., Moravsky, A. P., Garcia-Sakai, V., and Chen, S.-H. 2007. Observation of a dynamic crossover in water confined in double-wall carbon nanotubes. Phys.Rev.E, 76, 021505.Google Scholar
Chu, X.-Q., Fratini, E., Baglioni, P., Faraone, A., and Chen, S.-H. 2008. Observation of a dynamic crossover in RNA hydration water which triggers a dynamic transition in the biopolymer. Phys.Rev.E, 77, 011908.Google Scholar
Chu, X.-Q., Faraone, A., Kim, C., Fratini, E., Baglioni, P., Leao, J. B., and Chen, S.-H. 2009., Proteins remain soft at lower temperatures under pressure. J. Phys. Chem., B113, 5001.Google Scholar
Chu, X.-Q., Liu, K.-H., Tyagi, M.S., Mou, C.-Y., and Chen, S.-H. 2010. Low-temperature dynamics of water confined in a hydrophobic mesoporous material. Phys. Rev. E, 82, 020501.Google Scholar
Chu, X.-Q., Mamontov, E., O'Neill, H., and Zhang, Q. 2012. Apparent decoupling of the dynamics of a protein from the dynamics of its aqueous solvent. J. Phys. Chem. Lett., 3, 380–385.Google Scholar
Chumakov, A.I., Monaco, G., and Monaco, A. et al. 2011. Equivalence of the boson peak in glasses to the transverse acoustic van Hove singularity in crystals. Phys. Rev. Lett., 106, 225501.Google Scholar
Cohen, M.H., and Turnbull, D. 1959. Molecular transport in liquids and glasses. J. Chem. Phys., 31, 1164.Google Scholar
Cohen, E. D. G., and de Schepper, I. M. 1990. Effective eigenmode description of dynamical processes in dense classical fluids and fluid mixtures. Nuovo Cimento, 12, 521.Google Scholar
Cohen, E.G.D., de Schepper, I.M., and Zuilhof, M.J. 1984. Kinetic theory of the eigenmodes of classical fluids and neutron scattering. Physica B, C127, 282–291.Google Scholar
Coniglio, A., and Klein, W. 1980. Clusters and Ising critical droplets: a renormalisation group approach. J. Phys. A: Math. Gen., 13, 2775.Google Scholar
Coniglio, A., De Angelis, U., and Forlani, A. 1977. Pair connectedness and cluster size. J. Phys. A: Mat, 10, 1123.Google Scholar
Copley, J. R. D., and Cook, J. C. 2003. The disk chopper spectrometer at NIST: a new instrument for quasielastic neutron scattering studies. Chem. Phys., 292, 477.Google Scholar
Corezzi, S., De Michele, C., Zaccarelli, E., Fioretto, D., and Sciortino, F. 2008. A molecular dynamics study of chemical gelation in a patchy particle model. Soft Matter, 4, 1173–1177.Google Scholar
Corezzi, S., De Michele, C., Zaccarelli, E., Tartaglia, P., and Sciortino, F. 2009. Connecting irreversible to reversible aggregation: time and temperature. J. Phys. Chem. B, 113, 1233–1236.Google Scholar
Daniel, I., Oger, P., and Winter, R. 2006. Origins of life and biochemistry under high-pressure conditions. Chem. Soc. Rev., 35, 858–875.Google Scholar
Dawson, K. A., Foffi, G., Fuchs, M. et al. 2000. Higher-order glass-transition singularities in colloidal systems with attractive interactions. Phys. Rev. E, 63, 011401–1–011401–17.Google Scholar
De Michele, C., Gabrielli, S., Tartaglia, P., and Sciortino, F. 2006a. Dynamics in the presence of attractive patchy interactions. J. Phys. Chem. B, 110, 8064–8079.Google Scholar
De Michele, C., Tartaglia, P., and Sciortino, F. 2006b. Slow dynamics in a primitive tetrahedral network model. J. Chem. Phys., 125, 204710–1–204710–8.Google Scholar
de Schepper, I. M., Cohen, E. G. D., Bruin, C., van Rijs, J. C., Montfrooij, W., and de Graaf, L. A. 1988. Hydrodynamic time correlation functions for a Lennard-Jones fluid. Phys.Rev. A, 38, 271–287.Google Scholar
Domb, C. 1996. The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena. London: Taylor and Francis.
Dore, J. C., and Teixeira, J. 1991. Hydrogen-bonded Liquids. Dordrecht: Kluwer Academic.
Doster, W., Cusack, S., and Petry, W. 1989. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature, 337, 754–756.Google Scholar
Doster, W., Busch, S., Gaspar, A. M., Appavou, M.-S., Wuttke, J., and Scheer, H. 2010. Dynamical transition of protein-hydration water. Phys. Rev. Lett., 104, 098101.Google Scholar
Douglas, J. F., and Leporini, D. 1998. Obstruction model of the fractional Stokes–Einstein relation in glass-forming liquids. J. Non-Cryst. Solids, 235237, 137–141.Google Scholar
Eckmann, J. P., and Procaccia, I. 2008. Ergodicity and slowing down in glass-forming systems withsoft potentials: No finite-temperature singularities. Phys. Rev. E, 78, 011503.Google Scholar
Egelstaff, P. A. 1994. An Introduction to the Liquid State. Oxford: Clarendon Press.
Egelstaff, P. A. 1967. Thermal Neutron Scattering. New York: Academic Press.
Ehlers, G., Podlesnyak, A. A., Niedziela, J.L., Iverson, E.B., and Sokol, P.E. 2011. The new cold neutron chopper spectrometer at the Spallation Neutron Source: design and performance. Rev. Sci. Instrum., 82, 85108.Google Scholar
Eisenberger, P., and Platzman, P. M. 1970. Compton scattering of X-rays from bound electrons. Phys. Rev. A, 2, 415.Google Scholar
Erko, M., Wallacher, D., Hoell, A., Hau, T., Zizak, I., and Paris, O. 2012. Density minimum of confined water at low temperatures: A combined study by small-angle scattering of X-rays and neutrons. Phys. Chem. Chem. Phys., 14, 3852–3858.Google Scholar
Evans, R. 1990. Fluids adsorbed in narrow pores – phase-equilibria and structure. J. Phys. Conden. Matt., 2, 8989–9007.Google Scholar
Fabbian, L., Gotze, W., Sciortino, F., Tartaglia, P., and Thiery, F. 1999. Ideal glass–glass transitions and logarithmic decay of correlations in a simple system. Phys.Rev.E, 59, R1347–R1350.Google Scholar
Fak, B., and Dorner, B. 1997. Damped harmonic oscillator fitting function, including Bose factor. Physica B, 234-236, 1107.Google Scholar
Faraone, A., Chen, S.-H., Fratini, E., Baglioni, P., Liu, L., and Brown, C. 2002. Rotational dynamics of hydration water in dicalcium silicate by quasi-elastic neutron scattering. Phys. Rev. E, 65, 040501.Google Scholar
Faraone, A., Liu, L., Mou, C.-Y., Shih, P. C., Brown, C., Copley, J. R. D., Dimeo, R. M., and Chen, S.-H. 2003a. Dynamics of supercooled water in mesoporous silica matrix MCM-48-S. Eur. Phys. J., E12, S59–S62.Google Scholar
Faraone, A., Liu, L., Mou, C. -Y., Shih, P.-C., Copley, J.R.D., and Chen, S.-H. 2003b. Translational and rotational dynamics of water in mesoporous silica materials: MCM-41-S and MCM-48-S. J. Chem. Phys., 119, 3963–3971.Google Scholar
Faraone, A., Liu, L., Mou, C.-Y., Yen, C.-W., and Chen, S.-H. 2004. Fragile-to-strong liquid transition in deeply supercooled confined water. J. Chem. Phys., 121, 10843–10846.Google Scholar
Faraone, A., Zhang, Y., Liu, K.-H., Mou, C.-Y., and Chen, S.-H. 2009. Single particle dynamics of water confined in a hydrophobically modified MCM-41-S nanoporous matrix. J. Chem. Phys., 130, 134512.Google Scholar
Fayer, M. D., and Levinger, N. E. 2010. Analysis of water in confined geometries and at interfaces. Annual Review of Analytical Chemistry, 3, 89–107.Google Scholar
Fenimore, P. W., Frauenfelder, H., McMahon, B. H., and Parak, F. G. 2002. Slaving: solvent fluctuations dominate protein dynamics and functions. Proc. Natl. Acad. Sci. USA, 99, 16047.Google Scholar
Fenimore, P. W., Frauenfelder, H., McMahon, B. H., and Young, R. D. 2004. Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proc. Natl. Acad. Sci. USA, 101, 14408.Google Scholar
Fenimore, P. W., Frauenfelder, H., Magazú, S. et al. 2013. Concepts and problems in protein dynamics. Chem. Phys., 424, 2.Google Scholar
Fernandez-Alonso, F., Bermejo, F. J., McLain, S. E. et al. 2007. Observation of fractional Stokes–Einstein behavior in the simplest hydrogen-bonded liquid. Phys. Rev. Lett., 98, 077801.Google Scholar
Fisher, M. E., and Barber, M. N. 1972. Scaling theory for finite-size effects in the critical region. Phys. Rev. Lett., 28, 1516.Google Scholar
Flory, P. J. 1953. Principles of Polymer Chemistry. Ithaca, NY: Cornell University Press.
Foffi, G., Zaccarelli, E., Sciortino, F., Tartaglia, P., and Dawson, K. A. 2000. Kinetic arrest originating in competition between attractive interaction and packing force. J. Stat. Phys., 100, 363.Google Scholar
Ford, M. H., Auerbach, S. M., and Monson, P. A. 2004. On the mechanical properties and phase behavior of silica: a simple model based on low coordination and strong association. J. Chem. Phys., 121, 8415.Google Scholar
Franks, F. 2000. Water: A Matrix of Life, 2nd edn. Cambridge: Royal Society of Chemistry.
Fratini, E., Chen, S.-H., Baglioni, P., and Bellissent-Funel, M.-C. 2001. Age-dependent dynamics of water in hydrated cement paste. Phys. Rev. E, 64, 020201.Google Scholar
Frauenfelder, H., Chen, G., Berendzen, J. et al. 2009. A unified model of protein dynamics. PNAS, 106, 5129.Google Scholar
Freidman, H. L. 1985. A Course in Statistical Mechanics. New York: Prentice-Hall.
Frick, B., and Richter, D. 1995. The microscopic basis of the glass transition in polymers from neutron scattering studies. Science, 267, 1939.Google Scholar
Fuentevilla, D. A., and Anisimov, M. A. 2006. Scaled equation of state for supercooled water near the liquid-liquid critical point. Phys. Rev. Lett., 97, 195702.Google Scholar
Gallo, P., Sciortino, F., Tartaglia, P., and Chen, S.-H. 1996. Slow dynamics of water molecules in supercooled states. Phys. Rev. Lett., 76, 2730–2733.Google Scholar
Gallo, P., Rovere, M., and Spohr, E. 2000. Glass transition and layering effects in confined water: a computer simulation study. J. Chem. Phys., 113, 11324–11335.Google Scholar
Gallo, P., Rovere, M., and Chen, S.-H. 2010a. Anomalous dynamics of water confined in MCM-41 at different hydrations. J. Phys.: Condens. Matter, 22, 284102.Google Scholar
Gallo, P., Rovere, M., and Chen, S.-H. 2010b. Dynamic crossover in supercooled confined water: Understanding bulk properties through confinement. J. Phys. Chem. Lett., 1, 729–733.Google Scholar
Gallo, P., Rovere, M., and Chen, S.-H. 2012. Water confined in MCM-41: a mode coupling theory analysis. J. Phys.: Condens. Matter, 24, 064109.Google Scholar
Garrahan, J. P., and Chandler, D. 2003. Coarse-grained microscopic model of glass-formers. PNAS, 100, 9710–9714.Google Scholar
Gelb, L.D., Gubbins, K. E., Radhakrishnan, R., and Sliwinska-Bartkowiak, M. 1999. Phase separation in confined systems. Rep. Prog. Phys., 62, 1573–1659.Google Scholar
Götze, W. 1991. Liquids, Freezing and the Glass Transition. Amsterdam: Elsevier.
Götze, W. 2009. Complex Dynamics of Glass-Forming Liquids. Oxford: Oxford University Press.
Götze, W., and Sjögren, L. 1987. The glass transition singularity. Z. Phys. B, 65, 415–427.Google Scholar
Götze, W., and Sjögren, L. 1992. Relaxation processes in supercooled liquids. Rep. Prog. Phys., 55, 241–376.Google Scholar
Götze, W., and Sperl, M. 2004. Critical decay at higher-order glass-transition singularities. J. Phys. Condens. Matt., 16, S4807.Google Scholar
Götze, W., and Voigtmann, Th. 2003. Effect of composition changes on the structural relaxation of a binary mixture. Phys.Rev.E, 67, 021502–1–021502–14.Google Scholar
Granroth, G. E., Kolesnikov, A. I., Sherline, T. E. et al. 2010. SEQUOIA: a newly operating chopper spectrometer at the SNS. AIP Conference Proceedings, 251, 012058.Google Scholar
Grimm, G., Stiller, H., Majkrzak, C. F., Rupprecht, A., and Dahlborg, U. 1987. Observation of acoustic umklapp-phonons in water-stabilized DNA by neutron scattering. Phys. Rev. Lett., 59, 1780–1783.Google Scholar
Guo, X. H., and Chen, S.-H. 1990. Reptation mechanism in protein-sodium-dodecylsulfate (SDS) polyacrylamide-gel electrophoresis. Phys. Rev. Lett., 64, 2579–2582.Google Scholar
Guo, X. H., Zhao, N. M., Chen, S. H., and Teixeira, J. 1990. Small-angle neutron scattering study of the structure of protein/detergent complexes. Biopolymers, 29, 335–346.Google Scholar
Hansen, J.-P., and McDonald, I. R. 2006. Theory ofSimple Liquids, 3rd edn. New York: Academic Press.
Hayter, J. B., and Penfold, J. 1981. An analytic structure factor for macroion solutions. Mol. Phys., 42, 109–118.Google Scholar
He, Y., Ku, P. I., Knab, J. R., Chen, J. Y., and Markelz, A. G. 2008. Protein dynamical transition does not require protein structure. Phys. Rev. Lett., 101, 178103.Google Scholar
He, Y., Chen, J.-Y., Knab, J.R., Zheng, W., and Markelz, A. G. 2011. Evidence of protein collective motions on the Picosecond timescale. Biophys. J., 100, 1058–1065.Google Scholar
Heremans, K., and Smeller, L. 1998. Protein structure and dynamics at high pressure. Biochimica Et Biophysica Acta–Protein Structure and Molecular Enzymology, 1386, 353–370.Google Scholar
Higgins, J. S., Nicholson, L. K.,and Hayter, J. B. 1981. Observation of single chain motion: a polymer melt. Polymer, 22, 163–167.Google Scholar
Hildebrandt, G. 1979. X-ray linear absorption coefficients for silicon and germanium in the energy range 5 to 50 keV. Acta. Cryst. A, 35, 696–697.Google Scholar
Hohenberg, P.C., and Halperin, B.I. 1977. Theory of dynamic critical phenomena. Rev. Mod Phys, 49, 435–479.Google Scholar
Holten, V., Bertrand, C. E., Anisimov, M. A., and Sengers, J. V. 2012. Thermodynamics of supercooled water. J. Chem. Phys., 136, 094507.Google Scholar
Holz, M., and Chen, S.-H. 1978. Quasi-elastic light scattering from migrating chemo static bands of E. Coli. Biophys. J., 23, 15.Google Scholar
Horn, H.W., Swope, W.C., Pitera, J. W. et al. 2004. Development of an improved foursite water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys., 120, 9665–9678.Google Scholar
Hrubý, J., Vinš, V., Mareš, R., Hykl, J., and Kalovà, J. 2014. Surface tension of supercooled water: no inflection point down to ≈ 25°C. J. Phys. Chem. Lett., 5, 425428.Google Scholar
Ito, K., Moynihan, C.T., and Angell, C. A. 1999. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature, 398, 492–495.Google Scholar
Jennings, H. M. 2000. A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Res., 30, 101–116.Google Scholar
Jennings, H.M. 2008. Refinements to colloid model of C-S-H in cement: CM-II. Cement and Concrete Res., 38, 275–289.Google Scholar
Jorgensen, W.L., and Tiradorives, J. 1988. The Opls potential functions for proteins – energy minimizations for crystals of cyclic-peptides and crambin. J. Am. Chem. Soc., 110, 1657–1666.Google Scholar
Jung, Y. J., Garrahan, J. P., and Chandler, D. 2004. Excitation lines and the breakdown of the Stokes-Einstein relation in supercooled liquids. Phys.Rev.E, 69, 061205.Google Scholar
Kamgar-Parsi, B., Cohen, E. G. D., and de Schepper, I. M. 1987. Dynamical processes in hard-sphere fluids. Phys. Rev. A, 35, 4781.Google Scholar
Kanno, H., Speedy, R. J., and Angell, C. A. 1975. Supercooling of water to – 92°C under pressure. Science, 189, 880–881.Google Scholar
Kautzmann, W. 1959. Some factors in the interpretation of protein denaturation. Adv. Protein Chem., 14, 1–63.Google Scholar
Kawasaki, K. 1986. Mode coupling and critical dynamics. In: Domb, C., and Green, M. S. (eds), Phase Transitions and Critical Phenomena, Vol. 5a. New York: Academic Press.
Kawasaki, K., and Lo, S. M. 1972. Nonlocal shear viscosity and order-parameter dynamics near the critical point of fluids. Phys. Rev. Lett., 29, 48.Google Scholar
Khodadadi, S., Pawlus, S., Roh, J. H., Sakai, V. G., and Mamontov, E. 2008. The origin of the dynamic transition in proteins. J. Chem. Phys., 128, 195101–195106.Google Scholar
Kim, C. 2008. Simulation Studies of Slow Dynamics of Hydration Water in Lysozyme: Hydration Level Dependence and Comparison with Experiment using New Time Domain Analysis. M.Phil. thesis, Department of Nuclear Science and Engineering, MIT.
Kittel, C. 1963. Quantum Theory of Solids. NewYork: JohnWiley.
Koester, L., Rauch, H., Herkens, M., and Schrder, K. 1981. Summary of Neutron Scattering Length. KFA-Report, Jl-1755.Jlich, GmBH: Kernforschungsanlage.
Kolafa, J., and Nezbeda, I. 1987. Monte Carlo simulations on primitive models of water and methanol. Mol. Phys., 61, 161175.Google Scholar
Kolesnikov, A. I., Sinitsyn, V. V., Ponyatovsky, E. G., Natkaniec, I., and Smirnov, L. S. 1994. Neutron scattering studies of the vibrational spectrum of high-density amorphous ice in comparison with ice Ih and VI. J. Phys.: Condens. Matter., 6, 375–382.Google Scholar
Kolesnikov, A. I., Li, J., Dong, S. et al. 1997. Neutron scattering studies of vapor deposited amorphous ice. Phys. Rev. Lett., 79, 1869–1872.Google Scholar
Kolesnikov, A. I., Li, J., Parker, S. F., Eccleston, R. S., and Loong, C.-K. 1999. Vibrational dynamics of amorphous ice. Phys. Rev., B, 59, 3569–3578.Google Scholar
Kotlarchyk, M., and Chen, S.-H. 1983. Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. J. Chem. Phys., 79, 2461.Google Scholar
Krishnamurthy, S., Bansil, R., and Wiafe-Akenten. 1983. Low frequency Raman spectrum of supercooled water. J. Chem. Phys., 79, 5863.Google Scholar
Kumar, P. 2006. Breakdown of the Stokes-Einstein relation in supercooled water. Proc. Natl. Acad. Sci. USA, 103, 12955–12956.Google Scholar
Kumar, P., Yan, Z., Xu, L., Mazza, M. G., Buldyrev, S. V., Chen, S.-H., Sastry, S., and Stanley, H. E. 2006. Glass transition in biomolecules and the liquid-liquid critical point of water. Phys. Rev. Lett., 97, 177802–177806.Google Scholar
Kumar, P., Wikfeldt, K. T., Schlesinger, D., Pettersson, L. G. M., and Stanley, H. E. 2013. The Boson peak in supercooled water. Scientific Reports, 3, 1980.Google Scholar
Lagi, M., Chu, X.-Q., Kim, C., Mallamace, F., Baglioni, P., and Chen, S.-H. 2008. The low temperature dynamic crossover phenomenon in protein hydration water: simulations vs experiments. J. Phys. Chem. B, 112, 1571–1575.Google Scholar
Lai, C. C. 1972. Light Intensity Correlation Spectroscopy and its Application to Study of Critical Phenomena and Biological Problems. Ph.D. thesis, MIT, Cambridge|MA.
Landau, L. D., and Lifshitz, E. M. 1960. Electrodynamics of Continuous Media.Reading, MA: Addison-Wesley.
Largo, J., Starr, F. W., and Sciortino, F. 2007. Self-assembling DNA dendrimers: a numerical study. Langmuir, 23, 5896–5905.Google Scholar
Laughlin, W. T., and Uhlmann, D. R. 1972. Viscous flow in simple organic liquids. J. Phys. Chem., 76, 2317–2325.Google Scholar
Leone, N., Villari, V., and Micali, N. 2012. Modulated heterodyne light scattering set-up for measuring long relaxation time at small and wide angle. Rev. Sci. Instrum., 83, 083102.Google Scholar
Leu, B., Alatas, A., Sinn, H. et al. 2010. Protein elasticity probed with two synchrotron based techniques. J. Chem. Phys., 132, 085103.Google Scholar
Li, J. 1996. Inelastic neutron scattering studies of hydrogen bonding in ices. J. Chem. Phys., 105, 6733–6755.Google Scholar
Li, J., and Kolesnikov, A. I. 2002. Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq., 100, 1–39.Google Scholar
Li, M., Chu, X.-Q., Fratini, E., Baglioni, P., Alatas, A., Alp, E. and Chen, S.-H. 2011. Phonon-like excitation in secondary and tertiary structure of hydrated protein powders. Soft Matter, 7, 9848.Google Scholar
Liao, C.-Y., and Chen, S.-H. 2001. Theory of the generalized dynamic structure factor of polyatomic molecular fluids measured by inelastic X-ray scattering. Phys. Rev. E, 64, 021205.Google Scholar
Liao, C., Choi, S.M., Mallamace, F., and Chen, S.-H. 2000a. SANS study of the structure and interaction of L64 triblock copolymer micellar solution in the critical region. J. Appl. Crystallogr., 33, 677.Google Scholar
Liao, C.-Y., Chen, S.-H., and Sette, F. 2000b. Analysis of inelastic x-ray scattering spectra of low-temperature water. Phys. Rev. E, 61, 1518–1526.Google Scholar
Lichtenegger, H., Doster, W., Kleinert, T., Birk, A., Sepiol, B., and Vogl, G. 1999. Heme-solvent coupling: A Mssbauer study of myoglobin in sucrose. Biophys. J., 76, 414–422.Google Scholar
Lide, D. R. 2007. CRC Handbook of Chemistry and Physics. Boca Raton, FL: Taylor and Francis.
Limmer, D. T., and Chandler, D. 2011. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. J. Chem. Phys., 135, 134503.Google Scholar
Limmer, D. T., and Chandler, D. 2012. Phase diagram of supercooled water confined to hydrophilic nanopores. J. Chem. Phys., 137, 044509.Google Scholar
Lindahl, E., Hess, B., and van der Spoel, D. 2001. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model., 7, 306–317.Google Scholar
Liu, D., Zhang, Y., Chen, C.-C., Mou, C.-Y., Poole, P. H., and Chen, S.-H. 2007. Observation of the density minimum in deeply supercooled confined water. Proc. Natl. Acad. Sci. USA, 104, 9570–9574.Google Scholar
Liu, D., Zhang, Y., Liu, Y., Wu, J. L., Chen, C. C., Mou, C. Y., and Chen, S.-H. 2008a. Density measurement of 1-d confined water by small angle neutron scattering method: pore size and hydration level dependences. J. Phys. Chem. B, 112, 4309–4312.Google Scholar
Liu, D., Chu, X.-Q., Lagi, M., Zhang, Y., Fratini, E., Baglioni, P., Alatas, A., Said, A., Alp, E., and Chen, S.-H. 2008b. Studies of phononlike low-energy excitations of protein molecules by inelastic X-ray scattering. Phys. Rev. Lett., 101, 135501.Google Scholar
Liu, K.-H., Zhang, Y., Lee, J.-J., Chen, C.-C., Yen, Y.-Q., Chen, S.-H., and Mou, C.-Y. 2013. Density and anomalous thermal expansion of deeply cooled water confined in mesoporous silica investigated by synchrotron X-ray diffraction. J. Chem. Phys., 139, 064503.Google Scholar
Liu, L., Faraone, A., and Chen, S.-H. 2002. A model for the rotational contribution to quasi-elastic neutron scattering spectra from supercooled water. Phys. Rev. E, 65, 041506.Google Scholar
Liu, L., Faraone, A., Mou, C.-Y., Shih, P. C., and Chen, S.-H. 2004a. Slow dynamics of supercooled water. J. Phys.: Condens. Matter, 16, S5403–S5436.Google Scholar
Liu, L., Chen, S.-H., Faraone, A., Yen, C.-W., and Mou, C.-Y. 2005b. Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys. Rev. Lett., 95, 117802.Google Scholar
Liu, L., Chen, S.-H., Faraone, A., Yen, C. W., Mou, C.-Y., Kolesnikov, A., Mamontov, E., and Leao, J. 2006. Quasielastic and inelastic neutron scattering investigation of fragile-to-strong transition in deeply supercooled water confined in nanoporous silica matrices. J. Phys.: Condens. Matter, 18, S2261–S2284.Google Scholar
Liu, Y., Berti, D., Faraone, A., Chen, W.-R., Alatas, A., Sinn, H., Alp, E., Baglioni, P., and Chen, S.-H. 2004. Inelastic x-ray scattering studies of phonons in liquid crystalline DNA. Phys. Chem. Chem. Phys., 6, 1499.Google Scholar
Liu, Y., Chen, W.-R., and Chen, S.-H. 2005a. Cluster formation in two Yukawa fluids. J. Chem. Phys., 122, 044507.Google Scholar
Liu, Y., Chen, S.-H., Berti, D., Baglioni, P., Alatas, A.Sinn, H., Alp, E., and Said, A. 2005c. Effects of counterion valency on the damping of phonons propagating along the axial direction of liquid-crystalline DNA. J. Chem. Phys., 123, 214909.Google Scholar
Liu, Y., Palmer, J. C., Panagiotopoulos, A. Z., and Debenddetti, P. G. 2012. Liquid-liquid transition in ST2 water. J. Chem. Phys., 137, 214505.Google Scholar
Liu, Y.-C., Chen, S.-H., and Huang, J.-S. 1996. Relationship between the microstructure and rheology of micellar solutions formed by a triblock copolymer surfactant. Phys. Rev. E, 54, 1698.Google Scholar
Lo, S. M., and Kawasaki, K. 1973. Frequency-dependence correction to the order-parameter decay rates near the critical point of fluids. Phys. Rev. A, 8, 2176.Google Scholar
Lundahl, P. et al. 1986. A model for ionic and hydrophobic interactions and hydrogen-bonding in sodium dodecyl sulfate-protein complexes. Biochem. Biophys. Acta, 873, 20–26.Google Scholar
Magazù, S., Migliardo, F., and Benedetto, A. 2011. Puzzle of protein dynamical transition. J. Phys. Chem., B115, 7736–7743.Google Scholar
Makino, S. 1979. Interaction of proteins with amphiphilic substances. Adv. Biophys, 12, 131–184.Google Scholar
Mallamace, F., Gambadauro, P., Micali, N., Tartaglia, P., Liao, C., and Chen, S.-H. 2000. Kinetic glass transition in a micellar system with short-range attractive interaction. Phys. Rev. Lett., 84, 5431–5434.Google Scholar
Mallamace, F., Broccio, M., Corsaro, C. et al. 2006. The fragile-to-strong dynamic crossover transition in confined water: NMR results. J. Chem Phys., 124, 161102.Google Scholar
Mallamace, F., Branca, C., Broccio, M., Corsaro, C., Mou, C.-Y., and Chen, S.-H. 2007a. The anomalous behaviour of the density of water in the range 30 K < T < 373 K. Proc. Natl. Acad. Sci., 104, 18387.Google Scholar
Mallamace, F., Broccio, M., Corsaro, C., Faraone, A., Majolino, D., Venuti, V., Liu, L., Mou, C.-Y., and Chen, S.-H. 2007b. Evidence of the existence of the low-density liquid phase in supercooled confined water. Proc. Natl. Acad. Sci. USA, 104, 424–428.Google Scholar
Mallamace, F., Chen, S.-H., Broccio, M., Corsaro, C., Crupi, V., Majolino, D., Venuti, V., Baglioni, P., Fratini, E., Vannucci, C., and Stanley, H. E. 2007c. Role of the solvent in the dynamical transitions of proteins: the case of the lysozyme-water system. J. Chem Phys., 127, 045104.Google Scholar
Mallamace, F., Branca, C., Corsaro, C., Leone, N., Spooren, J., Chen, S.-H., and Stanley, H. E. 2010. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc. Natl. Acad. Sci. USA, 107, 22457–22462.Google Scholar
Mallamace, F., Corsaro, C., Leone, N., Villari, V., Micali, N., and Chen, S.-H. 2014. On the ergodicity of supercooled molecular glass-forming liquids at the dynamical arrest: the o-terphenyl case. Nature: Sci. Reports, 4, 3747.Google Scholar
Mamontov, E., and Chu, X.-Q. 2012. Water-protein dynamic coupling and new opportunities for probing it at low to physiological temperatures in aqueous solutions. Phys. Chem. Chem. Phys., 14, 11573.Google Scholar
Mamontov, E., and Herwig, K. W. 2011. A time-of-flight backscattering spectrometer at the Spallation Neutron Source, BASIS. Rev. Sci. Instrum., 82, 85109.Google Scholar
Mamontov, E., Burnham, C. J., Chen, S.-H., Moravsky, A. P., Loong, C. K., de Souza, N. R., and Kolesnikov, A.I. 2006. Dynamics of water confined in single- and double-wall carbon nanotubes. J. Chem. Phys., 124, 194703.Google Scholar
Mamontov, E., O'Neill, H., and Zhang, Q. 2010. Mean-squared atomic displacements in hydrated lysozyme, native and denatured. J. Biol. Phys., 36, 291–297.Google Scholar
Mancinelli, R., Bruni, F., and Ricci, M. A. 2010. Controversial evidence on the point of minimum density in deeply supercooled confined water. J. Phys. Chem. Lett., 1, 1277–1282.Google Scholar
Manoharan, V. N., Elsesser, M. T., and Pine, D. J. 2003. Dense packing and symmetry in small clusters of microspheres. Science, 301, 483–487.Google Scholar
Mapes, M. K., Swallen, S. F., and Ediger, M. D. 2006. Self-diffusion of supercooled o-terphenyl near the glass transition temperature. J. Phys. Chem. B, 110, 507–511.Google Scholar
Masciovecchio, C., Bergmann, U., Krisch, M. H., Ruocco, G., Sette, F., and Verbeni, R. 1996a. A perfect crystal X-ray analyser with 1.5 meV energy resolution. Nucl. Instrum. Methods, B117, 339–340.Google Scholar
Masciovecchio, C., Bergmann, U., Krisch, M. H., Ruocco, G., Sette, F., and Verbeni, R. 1996b. A perfect crystal X-ray analyser with meV energy resolution. Nucl. Instrum. Methods, B111, 181–186.Google Scholar
Mezard, M., and Parisi, G. 1998. Thermodynamics of glasses: a first principles computation. Phys. Rev. Lett., 82, 747–750.Google Scholar
Mishima, O. 1994. Reversible first-order transition between two water amorphs at 0.2 GPa and 135 K. J. Chem. Phys., 100, 5910–5912.Google Scholar
Mishima, O. 2000. Liquid-liquid critical point in heavy water. Phys. Rev. Lett., 85, 334.Google Scholar
Mishima, O. 2005. Application of polyamorphism in water to spontaneous crystallization of emulsified LiClH2O solution. J. Chem. Phys., 123, 154506.Google Scholar
Mishima, O. 2007. Explanation of ‘the mysteries of water’ by a liquid-liquid critical point. Rev. High Pressure Sci. Tech., 17, 352–356.Google Scholar
Mishima, O., and Stanley, H. E. 1998a. Decompression-induced melting of ice IV and the liquid-liquid transition in water. Nature, 392, 164–168.Google Scholar
Mishima, O., and Stanley, H. E. 1998b. The relationship between liquid, supercooled and glassy water. Nature, 396, 329–335.Google Scholar
Monaco, G., Cunsolo, A., Ruocco, G., and Sette, F. 1999. Viscoelastic behavior of water in the terahertz-frequency range: an inelastic x-ray scattering study. Phys. Rev. E, 60, 5505–5521.Google Scholar
Montfrooij, W., Svensson, E. C., de Schepper, I. M., and Cohen, E. G. D. 1996. Dynamics in He at 4 and 8K from inelastic neutron scattering. J. Low Temp. Phys., 105, 149–183.Google Scholar
Mori, H. 1965. Transport, collective motion, and Brownian motion. Prog. Theor. Phys., 33, 423–455.Google Scholar
Morineau, D., Xia, Y., and Alba-Simionesco, C. 2002. Finite-size and surface effects on the glass transition of liquid toluene confined in cylindrical mesopores. J. Chem. Phys., 117, 8966.Google Scholar
Mozhaev, V. V., Heremans, K., Frank, J., Masson, P., and Balny, C. 1996. High pressure effects on protein structure and function. Proteins–Structure Function and Genetics, 24, 81–91.Google Scholar
Nelson, C. A. 1971. The binding of detergents to proteins I. The maximum amount of dodecyl sulfate bound to proteins and the resistance to binding of several proteins. J. Biol. Chem., 246, 3895–3901.Google Scholar
Novikov, V. N., and Sokolov, A. P. 2003. Universality of the dynamic crossover in glassforming liquids: a magic relaxation time?Phys. Rev. E, 67, 031507.Google Scholar
Nozieres, P. 1964. Theory of Interacting Fermi Systems. New York: W. A. Benjamin.
Orecchini, A., Paciaorni, A., Bizzarri, A. R., and Cannistraro, S. 2001. Low-frequency vibrational anomalies in -lactoglobulin: contribution of different hydrogen classes revealed by inelastic neutron scattering. J. Phys. Chem. B, 105, 12150.Google Scholar
Orecchini, A., Paciaroni, A., De Francesco, A., Petrillo, C., and Sacchetti, F. 2009. Collective dynamics of protein hydration water by Brillouin neutron spectroscopy. J. Am. Chem. Soc., 131, 4664–4669.Google Scholar
Ornstein, L. S., and Zernike, F. 1914. Accidental deviations of density and opalescence at the critical point of a single substance. Akad. Sci. (Amsterdam), 17, 793.Google Scholar
Oxtoby, D. W., and Gelbart, W. M. 1974. Shear viscosity and order parameter dynamics of fluids near the critical point. J. Chem. Phys., 61, 2957.Google Scholar
Paciaroni, A., Cinelli, S., and Onori, G. 2002. Effect of the environment on the protein dynamical transitions: a neutron scattering study. Biophys. J., 83, 1157.Google Scholar
Paciaroni, A., Orecchini, A, Haertlein, M. et al. 2012. Vibrational collective dynamics of dry proteins in the terahertz region. J. Phys. Chem. B, 116, 3861–3865.Google Scholar
Parisi, G. 1980. A sequence of approximated solutions to the S-K model for spin glasse. J. Phys. A: Math. Gen., 13, L115–121.Google Scholar
Paschek, D. 2005. How the liquid-liquid transition affects hydrophobic hydration in deeply supercooled water. Phy. Rev. Lett., 94, 217802.Google Scholar
Pawlus, S., Khodadadi, S., and Sokolov, A. P. 2008. Conductivity in hydrated proteins: no signs of the fragile-to-strong crossover. Phys. Rev. Lett., 100, 108103.Google Scholar
Perl, R., and Ferrel, R. A. 1972. Critical viscosity and diffusion in the binary-liquid phase transition. Phys. Rev. Lett., 29, 51.Google Scholar
Pham, K. N. et al. 2002. Multiple glassy states in a simple model system. Science, 296, 104–106.Google Scholar
Poole, P. H., Sciortino, F., Essmann, U., and Stanley, H. E. 1992. Phase-Behavior of Metastable Water. Nature, 360, 324–328.Google Scholar
Poole, P. H., Sciortino, F., Essmann, U., and Stanley, H. E. 1993. Spinodal of liquid water. Phys. Rev. E, 48, 3799–3817.Google Scholar
Poole, P. H., Saika-Voivod, I., and Sciortino, F. 2005. Density minimum and liquid-liquid phase transition. J. Phys.: Condens. Matt., 17, L431–L437.Google Scholar
Power, E. A., and Thirunamachandran, T. 1978. On the nature of the Hamiltonian for the interaction of radiation with atoms and molecules. Am. J. Phys., 46, 370.Google Scholar
Pusey, P. N., and van Megen, W. 1986. Phase behavior of concentrated suspensions of nearly hard colloidal spheres. Nature, 320, 340–342.Google Scholar
Pusey, P. N., and van Megen, W. 1989. Dynamic light scattering by non-ergodic media. Physica (Amsterdam), 157A, 705–741.Google Scholar
Rasmussen, B. F., Stock, A. M., Ringe, D., and Petsko, G. A. 1992. Crystalline ribonuclease-a loses function below the dynamic transition at 220-K. Nature, 357, 423–424.Google Scholar
Rauch, H., and Petrascheck, D. 1978. Neutron Diffraction. Berlin: Springer-Verlag.
Reynolds, J. A., and Tanford, C. 1970. Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes. Proc. Natl. Acad. Sci. USA, 66, 1002–1007.Google Scholar
Ricci, M. A., and Chen, S.-H. 1986. Chemical-bond spectroscopy with neutrons. Phys. Rev. A, 34, 1714–1719.Google Scholar
Ricci, M. A., Chen, S.-H., Price, D. L., Loong, C.-K., Toukan, K., and Teixeira, J. 1986. Observations and interpretation of H-bond breaking by neutron scattering. Physica B & C, 136, 190.Google Scholar
Ridi, F., Fratini, E., and Baglioni, P. 2011. Cement: a two thousand year old nano-colloid. J. Colloid Interface Sci., 357, 255–264.Google Scholar
Roh, J. H., Curtis, J. E., Azzam, S. et al. 2006. Influence of hydration on the dynamics of lysozyme. Biophys. J., 91, 2573.Google Scholar
Romano, F., Tartaglia, P., and Sciortino, F. 2007. Gas-liquid phase coexistence in a tetrahedral patchy particle model. J. Phys.: Condens. Matter, 19, 322101/1–322101/11.Google Scholar
Rontgen, W. C. 1892. Über die Constitution des Flussig–Wassers. Ann. Phys. (Leipzig), 281, 91–97.Google Scholar
Rossky, P. J., and Dale, W. D. T. 1980. Generalized recursive solutions to Ornstein Zernike integral equations. J. Chem. Phys., 73, 2457.Google Scholar
Rouch, J., Tartaglia, P., and Chen, S.-H. 1993. Experimental evidence of nonexponential relaxation near the critical point of a supramolecular liquid mixture. Phys. Rev. Lett., 71, 1947–1950.Google Scholar
Rovere, M., Ricci, M. A., Vellati, D., and Bruni, F. 1998. A molecular dynamics simulation of water confined in a cylindrical SiO2 pore. J. Chem. Phys., 108, 9859–9867.Google Scholar
Rubinstein, M., and Colby, R. H. 2003. Polymer Physics. New York: Oxford University Press.
Ruocco, G., and Sette, F. 1999. The high-frequency dynamics of liquid water. J. Phys.: Condens. Matter, 11, R259.Google Scholar
Rupley, J. A., and Careri, G. 1991. Protein hydration and function. Adv. Protein Chem., 41, 37.Google Scholar
Rupley, J. A., Yang, P. H., and Tollin, G. 1980. Thermodynamic and related studies of water interacting with proteins. In Water in Polymers. ACS Symp. Series, 127, 111–132.Google Scholar
Russel, W. B. 1996. Colloidal Dispersions. London: Cambridge University Press.
Sachs, R. G. 1953. Neutron Diffraction. Reading, MA: Addison-Wesley.
Sastry, S., Debenedetti, P. G., Sciortino, F., and Stanley, H. E. 1996. Singularity-free interpretation of the thermodynamics of supercooled water. Phys.Rev.E, 53, 6144–6154.Google Scholar
Schiró, G., Caronna, C., Natali, F., Koza, M. M., and Cupane, A. 2011. The protein dynamical transition does not require the protein polypeptide chain. J. Phys. Chem. Lett., 2, 2275–2279.Google Scholar
Schiró, G., Natali, F., and Cupane, A. 2012. Physical origin of anharmonic dynamics in proteins: new insights from resolutiondependent neutron scattering on homomeric polypeptides. Phys Rev. Lett., 109, 128102.Google Scholar
Sciortino, F. 2002. One liquid, two glasses. Nature Mat., 1, 145–146.Google Scholar
Sciortino, F. 2008. Gel forming patchy colloids and network glass formers: thermodynamic and dynamic analogies. Eur. Phys. J., B64, 505–509.Google Scholar
Sciortino, F., and Tartaglia, P. 1995. Structure factor scaling during irreversible cluster-cluster aggregation. Phys. Rev. Lett., 74, 282–285.Google Scholar
Sciortino, F., and Tartaglia, P. 2005. Glassy colloidal systems. Adv. Phys., 54, 471–524.Google Scholar
Sciortino, F., Belloni, A., and Tartaglia, P. 1995. Irreversible diffusion-limited cluster aggregation: the behavior of the scattered intensity. Phys.Rev.E, 52, 4068–4079.Google Scholar
Sciortino, F., Gallo, P., Tartaglia, P., and Chen, S.-H. 1996. Supercooled water and the kinetic glass transition. Phys. Rev. E, 54, 6331–6343.Google Scholar
Sciortino, F., Fabbian, L., Chen, S.-H., and Tartaglia, P. 1997. Supercooled water and the kinetic glass transition II: collective dynamics. Phys.Rev.E, 56, 5397–5404.Google Scholar
Sciortino, F., Tartaglia, P., and Zaccarelli, E. 2003. Evidence of a higher-order singularity in dense short-ranged attractive colloids. Phy. Rev. Lett., 91, 268301.Google Scholar
Sciortino, F., Mossa, S., Zaccarelli, E., and Tartaglia, P. 2004. Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. Phys. Rev. Lett., 93, 055701–1–055701–4.Google Scholar
Sciortino, F., Bianchi, E., Douglas, J. F., and Tartaglia, P. 2007. Self-assembly of patchy particles into polymer chains: a parameter-free comparison between Wertheim theory and Monte Carlo simulation. J. Chem. Phys., 126, 194903.Google Scholar
Sciortino, F., Saika-Voivod, I., and Poole, P. H. 2011. Study of the ST2 model of water close to the liquid-liquid critical point. Phys. Chem. Chem. Phys., 13, 19759–19764.Google Scholar
Sears, V. F. 1967. Cold neutron scattering by molecular liquids: III. Methane. Can. J. Phys., 45, 237–254.Google Scholar
Sears, V. F. 1978. Dynamic theory of neutron diffraction. Can. J. Phys., 56, 1262.Google Scholar
Sears, V. F. 1989. Neutron Optics. Oxford: Oxford University Press.
Segré, P. N., Prasad, V., Schofield, A. B., and Weitz, D. A. 2001. Glasslike kinetic arrest at the colloidal-gelation transition. Phys. Rev. Lett., 86, 6042–6045.Google Scholar
Sette, F., Ruocco, G., Krisch, M. et al. 1995. Collective dynamics in water by high energy resolution inelastic X-ray scattering. Phys. Rev. Lett., 75, 850–853.Google Scholar
Sette, F., Krisch, M. H., Masciovecchio, C., Ruocco, G., and Monaco, G. 1998. Dynamics of glasses and glass-forming liquids studied by inelastic X-ray scattering. Science, 280, 1550.Google Scholar
Sheu, E. Y. 1987. Theoretical Development and Experimental Verification of a Primitive Model for the Inter-Micellar Interactions. Ph.D. thesis, MIT, Cambridge, MA.
Shintani, H., and Tanaka, H. 2008. Universal link between the boson peak and transverse phonons in glass. Nature Materials, 7, 870.Google Scholar
Shirahama, K. et al. 1974. Free-boundary electrophoresis of sodium dodecyl sulfate-protein polypeptide complexes with special reference to SDS-polyacrylamide gel electrophoresis. J. Biochem. (Tokyo), 75, 309–319.Google Scholar
Shvyd'ko, Y., Stoupin, S., Shu, D., and Khachatryan, R. 2011. Using angular dispersion and anomalous transmission to shape ultra-monochromatic x-rays. Phys. Rev. A, 84, 053823.Google Scholar
Shvyd'ko, Y. et al. 2013. High contrast inelastic x-ray scattering with sub-meV resolution for nano- and mesoscale science. Preprint.
Silvestre-Albero, A., Jardim, E. O., Bruijn, E., Meynen, V., and Cool, P. 2008. Is there any microporosity in ordered mesoporous silicas?Langmuir: ACS j. surf. colloids, 25, 939–943.Google Scholar
Sinha, S. K., Freltoft, T., and Kjems, J. 1984. Kinetics of Aggregation and Gelation. Amsterdam: Elsevier Press.
Sinn, H. 2001. Spectroscopy with meV energy resolution. J. Phys.: Condens. Matter, 13, 7525.Google Scholar
Sjöström, J., Swenson, J., Bergman, R., and Shigeharu, K. 2008. Investigating hydration dependence of dynamics of confined water: Monolayer, hydration water and Maxwell–Wagner processes. J. Chem. Phys., 128, 154503.Google Scholar
Sokolov, A. P., Roh, J. H., Mamontov, E., and Sakai, V. G. 2008. Role of hydration water in dynamics of biological macromolecules. Chem. Phys., 345, 212–218.Google Scholar
Soper, A. K., and Ricci, M. A. 2000. Structures of high-density and low-density water. Phys. Rev. Lett., 84, 2881–2884.Google Scholar
Speedy, R. J. 1982. Stability-limit conjecture: an interpretation of the properties of water. J. Phys. Chem., 86, 982–991.Google Scholar
Speedy, R. J., and Angell, C. A. 1976. Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at 45°C. J. Chem. Phys., 65, 851–858.Google Scholar
Squires, G. L. 1978. Introduction to the Theory of Thermal Neutron Scattering. New York: Dover.
Stauffer, D., and Aharony, A. 1992. Introduction to Percolation Theory. London: Taylor and Francis.
Stillinger, F. H., and Rahman, A. 1974. Improved simulation of liquid water by molecular dynamics. J. Chem. Phys., 60, 1545.Google Scholar
Stillinger, F. H., and Weber, T. A. 1984. Packing structures and transitions in liquids and solids. Science, 225, 983–989.Google Scholar
Stockmayer, W. H. 1943. Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys., 11, 45–55.Google Scholar
Swallen, S. F., Bonvallet, P. A., McMahon, R. J., and Ediger, M. D. 2003. Self-diffusion of trisnaphthylbenzene near the glass transition temperature. Phys. Rev. Lett., 90, 015901.Google Scholar
Swenson, J. 2006. Comment on ‘Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water’. Phys. Rev. Lett., 97, 189801.Google Scholar
Swenson, J., Jansson, H., and Bergman, R. 2006. Relaxation processes in supercooled confined water and implications for protein dynamics. Phys. Rev. Lett., 96, 247802.Google Scholar
Takahara, S., Nakano, M., Kittaka, S. et al. 1999. Neutron scattering study on dynamics of water molecules in MCM-41. J. Phys. Chem. B, 103, 5814–5819.Google Scholar
Tanaka, H. 1998. Simple physical explanation of the unusual thermodynamic behavior of liquid water. Phys. Rev. Lett., 80, 5750–5753.Google Scholar
Tanford, C. 1968. Protein denaturation. Adv. Protein Chem., 23, 121–282.Google Scholar
Tarek, M., and Tobias, D. J. 2000. The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments. Biophys. J., 79, 3244–3257.Google Scholar
Tarek, M., and Tobias, D. J. 2002. Single-particle and collective dynamics of protein hydration water: A molecular dynamic study. Phys. Rev. Lett., 89, 275501.Google Scholar
Tarek, M., Tobias, D. J., Chen, S.-H., and Klein, M. L. 2001. Shortwavelength collective dynamics in phospholipid bilayers: a molecular dynamics study. Phys. Rev. Lett., 87, 238101–1.Google Scholar
Tartaglia, P. 2007. Models of gel-forming colloids. AIP Conf. Proc., 982, 295–303.Google Scholar
ten Wolde, P. R., and Frenkel, D. 1997. Enhancement of protein crystal nucleation by critical density fluctuations. Science, 277, 1975–1977.Google Scholar
Thiele, E. 1963. Equation of state for hard spheres. J. Chem. Phys., 39, 474.Google Scholar
Toellner, T. S., Alatas, A., and Said, A. H. 2011. Six-reflection meV-monochromator for synchrotron radiation. J. Synchrotron Radiat., 18, 605–611.Google Scholar
Toukan, K., and Rahman, A. 1985. Molecular-dynamics study of atomic motions in water. Phy. Rev. B, 31, 2643.Google Scholar
Toukan, K., Ricci, M. A., Chen, S.-H., Loong, C.-K., Price, D. L., and Teixeira, J. 1988. Neutron-scattering measurements of wave-vector-dependent hydrogen density of states in liquid water. Phys. Rev. A, 37, 2580–2589.Google Scholar
Tsujii, K., and Takagi, T. 1975. Proton magnetic resonance studies of the binding of an anionic surfactant with a benzene ring to a protein polypeptide with special reference to SDS-polyacrylamide gel electrophoresis. J. Biochem. (Tokyo), 77, 511–519.Google Scholar
Turnbull, D., and Cohen, M. H. 1961. Free-volume model of the amorphous phase: glass transition. J. Chem. Phys., 34, 120.Google Scholar
Turnbull, D., and Cohen, M. H. 1970. On the free-volume model of the liquid-glass transition. J. Chem. Phys., 52, 3038.Google Scholar
Uhlenbech, G. A., and Ornstein, L. S. 1930. On the theory of Brownian motion. Phys. Rev., 36, 823.Google Scholar
van Beest, B. W. H., Kramer, G. J, and van Santen, R. A. 1990. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett., 64, 1955–1958.Google Scholar
van Dongen, P., and Ernst, M. 1984. Kinetics of reversible polymerization. J. Stat. Phys, 37, 301–324.Google Scholar
Verwey, E. J., and Overbeek, J. Th. G. 1948. Theory of the Stability of Lyophobic Colloids. New York: Elsevier.
Vogel, M. 2008. Origins of apparent fragile-to-strong transitions of protein hydration waters. Phys. Rev. Lett., 101, 225701.Google Scholar
Vural, D., and Glyde, H. R. 2012. Intrinsic mean-square displacements in proteins. Phys. Rev. E, 88, 011926.Google Scholar
Waisman, E. 1973. The radial distribution function for a fluid of hard spheres at high densities: Mean spherical integral equation approach. Mol. Phys., 25, 45–48.Google Scholar
Walrafen, G. E. 1964. Raman spectral studies of water structure. J. Chem. Phys., 40, 3249.Google Scholar
Walrafen, G. E. 1972. In Franks, F. (ed.), Water: A Comprehensive Treatise, vol.1. New York: Plenum Press, p. 151.
Wang, J. S. 1989. Clusters in the three-dimensional Ising model with a magnetic field. Physica A, 161, 249.Google Scholar
Wang, Z., Bertrand, C. E., Chiang, W.-S., Fratini, E., Baglioni, P., Alatas, A., Alp, E. E., and Chen, S.-H. 2013. Inelastic X-ray scattering studies of the short-time collective vibrational motions in hydrated lysozyme powders and their possible relation to enzymatic function. J. Phys. Chem. B, 117, 1186–1195.Google Scholar
Wang, Z., Liu, K.-H., Harriger, L., Leao, J. B., and Chen, S.-H. 2014a. Evidence of the existence of the high-density and low-density phases in deeply-cooled confined heavy water under high pressures. J. Chem. Phys., 141, 014501.Google Scholar
Wang, Z., Fratini, E., Li, M., Le, P., Mamontov, E., Baglioni, P., and Chen, S.-H. 2014b. Hydration-dependent dynamic crossover phenomenon in protein hydration water. Phys. Rev. E, 90, 042705.Google Scholar
Wang, Z., Chiang, W.-S., Le, P., Fratini, E., Li, M., Alatas, A., Baglioni, P., and Chen, S.-H. 2014c. One role of hydration water in protein: key to the softening of short time intraprotein collective vibrations of specific length scale. Soft Matter, 10, 4298–4303.Google Scholar
Wang, Z., Liu, K.-H., Le, P., Li, M., Chiang, W.-S., Leao, J., Tyagi, M., Copley, J.R.D., Podlsnyak, A., Kolesnikov, A. I., Mou, C.-Y., and Chen, S.-H. 2014d. Boson peak in deeply cooled confined water: a possible way to explore the existence of the liquid-to-liquid transition in water. Phys. Rev. Lett., 112, 237802.Google Scholar
Wang, Z., Chen, S.-H. et al. 2014e. Unpublished.
Wang, Z., Ito, K., Chen, S.-H. et al. 2015. To be published.
Warren, B. E. 1969. X-ray Diffraction. New York: Addison-Wesley.
Weber, K., and Osborn, M. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem., 241, 4406–4412.Google Scholar
Wertheim, M. 1984. Fluids with highly directional attractive forces. I. Statistical thermodynamics. J.Stat.Phys., 35, 19–34.Google Scholar
Wertheim, M. S. 1963. Exact solution of the Percus–Yevick integral equation for hard spheres. Phys. Rev. Lett., 10, 321.Google Scholar
Wertheim, M. S. 1964. Analytic solution of the Percus–Yevick equation. J. Math. Phys., 5, 643.Google Scholar
Williams, S. R., and Evans, D. J. 2007. Statistical mechanics of time independent nondissipative nonequilibrium states. J. Chem. Phys., 127, 184101.Google Scholar
Williams, S. R., and van Megen, W. 2001. Motions in binary mixtures of hard colloidal spheres: melting of the glass. Phys. Rev. E, 64, 041502–1–041502–9.Google Scholar
Wu, C. F., and Chen, S.-H. 1987. SANS studies of concentrated protein solutions: Determination of the charge, hydration, and H/D exchange in cytochrome. J. Chem. Phys., 87, 6199–6200.Google Scholar
Xia, Y., Dosseh, G., Morineau, D., and?Alba-Simionesco, C. 2006. Phase diagram and glass transition of confined benzene. J. Phys. Chem. B, 110, 19735–19744.Google Scholar
Xu, L., Mallamace, F. Z., Yan., Starr, F. W., Buldyrev, S. V., and Stanley, H. E. 2009. Appearance of a fractional Stokes–Einstein relation in water and a structural interpretation of its onset. Nature Phys., 5, 565569.Google Scholar
Xu, L.-M., Kumar, P., Buldyrev, S. V., Chen, S.-H., Poole, P. H., Sciortino, F., and Stanley, H. E. 2005. Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proc. Natl. Acad. Sci. USA, 102, 16558–16562.Google Scholar
Yoshida, K., Yamaguchi, T., Kittaka, S., Bellissent-Funel, M.-C., and Fouquet, P. 2008. Thermodynamic, structural, and dynamic properties of supercooled water confined in mesoporous MCM-41 studied with calorimetric, neutron diffraction, and neutron spin echo measurements. J. Chem. Phys., 129, 054102.Google Scholar
Yoshida, K., Hosokawa, S., Baron, A., and Yamaguchi, T. 2010. Collective dynamics of hydrated lactogloblin by inelastic x-ray scattering. J. Chem. Phys., 133, 134501.Google Scholar
Yoshida, K., Yamaguchi, T., Kittaka, S., Bellissent-Funel, M.-C., and Fouquet, P. 2012. Neutron spin echo measurements of monolayer and capillary condensed water in MCM-41 at low temperatures. J. Phys.: Condens. Matter, 24, 064101.Google Scholar
Zaccarelli, E. 2001. Colloidal gels: equilibrium and non-equilibrium routes. J. Phys.: Condens. Matter, 19, 323101.Google Scholar
Zaccarelli, E., Foffi, G., Dawson, K. A., Sciortino, F., and Tartaglia, P. 2001. Mechanical properties of a model of attractive colloidal solutions. Phys. Rev. E., 63, 031501–1–031501–11.Google Scholar
Zaccarelli, E., Foffi, G., Sciortino, F., and Tartaglia, P. 2003. Activated bond-breaking processes preempt the observation of a sharp glass–glass transition in dense short-ranged attractive colloids. Phys. Rev. Lett., 91, 108301.Google Scholar
Zaccarelli, E., Buldyrev, S., La Nave, E. et al. 2005. Model for reversible colloidal gelation. Phys. Rev. Lett., 94, 218301.Google Scholar
Zaccarelli, E., Sciortino, F., and Tartaglia, P. 200l. A spherical model with directional interactions. I. Static properties. J. Chem. Phys., 127, 114501–1–114501–10.Google Scholar
Zanotti, J.-M., Bellissent-Funel, M.-C., and Chen, S.-H. 1999. Relaxational dynamics of supercooled water in porous glass. Phys. Rev. E, 59, 3084–3093.Google Scholar
Zhang, Y., Lagi, M., Ridi, F., Fratini, E., Baglioni, P., Mamontov, E., and Chen, S.-H. 2008. Observation of dynamic crossover and dynamic heterogeneity in hydration water confined in aged cement paste. J. Phys.: Condens. Matter, 20, 502101.Google Scholar
Zhang, Y., Liu, K.-H., Lagi, M., Liu, D., Littrell, K., Mou, C.-Y., and Chen, S.-H. 2009a. Absence of the density minimum of supercooled water in hydrophobic confinement. J. Phys. Chem. B, 113, 5001–5010.Google Scholar
Zhang, Y., Lagi, M., Fratini, E., Baglioni, P., Mamontov, E., and Chen, S.-H. 2009b. Dynamic susceptibility of supercooled water and its relation to the dynamic crossover phenomenon. Phys. Rev. E, 79, 040201 (R).Google Scholar
Zhang, Y., Faraone, A., Kamitakahara, W. A., Liu, K.-H., Mou, C.-Y., Leao, J. B., Chang, S., and Chen, S.-H. 2011. Density hysteresis of heavy water confined in a nanoporous silica matrix. Proc. Natl. Acad. Sci. USA, 108, 12206–12211.Google Scholar
Zwanzig, R. 1961. Lectures in Theoretical Physics, Vol. 3. New York: Wiley-Interscience.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Sow-Hsin Chen, Massachusetts Institute of Technology, Piero Tartaglia, Università degli Studi di Roma 'La Sapienza', Italy
  • Book: Scattering Methods in Complex Fluids
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139034241.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Sow-Hsin Chen, Massachusetts Institute of Technology, Piero Tartaglia, Università degli Studi di Roma 'La Sapienza', Italy
  • Book: Scattering Methods in Complex Fluids
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139034241.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Sow-Hsin Chen, Massachusetts Institute of Technology, Piero Tartaglia, Università degli Studi di Roma 'La Sapienza', Italy
  • Book: Scattering Methods in Complex Fluids
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139034241.012
Available formats
×