Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T09:28:19.131Z Has data issue: false hasContentIssue false

2 - The dendritic state

Published online by Cambridge University Press:  05 November 2012

Donald A. Tomalia
Affiliation:
NanoSynthons, LLC
Jørn B. Christensen
Affiliation:
University of Copenhagen
Ulrik Boas
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

Introduction

Historically, each of the three traditional macromolecular architectural classes (i.e. I. Linear, II. Cross-linked, III. Branched) have opened very rich polymer science frontiers. The importance of each major architectural class is apparent from the recognition they have received based on named Nobel laureates and new emerging applications; as shown in Figure 2.1. These traditional polymer architecture discoveries have been characterized by the emergence of new syntheses, structures, properties, and products that have not only advanced polymer science but also dramatically improved the human condition during this past century [1, 2].

In the past decade, nanotechnology initiatives have created an international focus on new “bottom-up” synthesis strategies. These synthesis strategies are focused on new nanostructures, phenomena and properties associated with dimensional length scales residing between 1–100 nm [3–5]. These dimensions encompass many key biological building blocks (i.e. protein, DNA, RNA, etc.) and critical biological applications (i.e. nanomedicine, drug delivery, nano-pharmaceuticals), as well as abiotic application areas of interest (i.e. nano-photonics, nano-electronics). This chapter focuses on an emerging, fourth major class of polymer architecture, namely, the dendritic architectural state and the implications of its convergence with traditional polymer science and nanoscience [6, 7].

Type
Chapter
Information
Dendrimers, Dendrons, and Dendritic Polymers
Discovery, Applications, and the Future
, pp. 25 - 112
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fenichell, S.Plastic: The Making of a Synthetic CenturyNew YorkHarper Collins Publishers, Inc. 1996Google Scholar
Morawetz, H.Polymers: The Origin and Growth of a ScienceNew YorkJ. Wiley 1985Google Scholar
Fahlman, B. D.Materials ChemistryDordrecht, The NetherlandsSpringer 2007CrossRefGoogle Scholar
Ozin, G. A.Arsenault, A. C.Nanochemistry: A Chemical Approach to NanomaterialsCambridge, UKRoyal Society of Chemistry 2005Google Scholar
Tomalia, D. A.In quest of a systematic framework for unifying and defining nanoscienceJ. Nanopart. Res 11 2009 1251CrossRefGoogle ScholarPubMed
Tomalia, D. A.A new complexityMaterials Today 6 2003 72Google Scholar
Tomalia, D. A.Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistryProg. Polym. Sci 30 2005CrossRefGoogle Scholar
Pullman, B.The Atom in the History of Human ThoughtNew YorkOxford University Press 1998Google Scholar
Strathern, P.s DreamNew YorkThe Berkley Publishing Group 2000Google Scholar
Barrett, J.Atomic Structure and PeriodicityHoboken, NYJohn Wiley & Sons and The Royal Society of Chemistry 2002Google Scholar
Scerri, E. R.The Periodic TableNew YorkOxford University Press 2007Google Scholar
Mason, S. E.Chemical EvolutionOxfordClarendon Press, Oxford University Press 1991Google Scholar
Joyce, G. F.Directed molecular evolutionScientific American 267 1992 90CrossRefGoogle ScholarPubMed
Tomalia, D. A.Dendrons/dendrimer: quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesisSoft Matter 6 2010 456CrossRefGoogle Scholar
Anderson, P. W.More is differentScience 177 1972 393CrossRefGoogle ScholarPubMed
Newkome, G. R.Baker, G. R.Young, J. K.Traynham, J. G.A systematic nomenclature for cascade polymersJ. Polym. Sci. Part A: Polym Chem 31 2003 641CrossRefGoogle Scholar
Newkome, G. R.Moorfield, C. N.Vögtle, F.Dendritic MoleculesWeinheimVCH 1996CrossRefGoogle Scholar
Vögtle, F.Richardt, G.Werner, N.Rackstraw, A. J.Dendrimer Chemistry: Concepts, Syntheses, Properties, ApplicationsWeinheimWiley-VCH 2009CrossRefGoogle Scholar
Hashimoto, T.Tsutsumi, K.Funaki, Y.Nanoprocessing based on biocontinuous microdomains of block copolymers: nanochannels coated with metalsLangmuir 13 1997 6869CrossRefGoogle Scholar
Reilly, R. K.Hawker, C. J.Wooley, K. L.Cross-linked block copolymer micelles: functional nanostructures of great potential and versatilityChem. Soc. Rev 35 2006 1068CrossRefGoogle Scholar
Percec, V.Ahn, C.-H.Unger, G.Yeardly, D. J. P.Möller, M.Controlling polymer shape through the self-assembly of dendritic side-groupsNature 391 1998 161CrossRefGoogle Scholar
Yin, R.Zhu, Y.Tomalia, D. A.Architectural copolymers: rod-shaped, cylindrical dendrimersJ. Am. Chem. Soc 120 1998 2678CrossRefGoogle Scholar
Guo, Y.Van Beek, J. D.Zhang, B.Turning polymer thickness: synthesis and scaling theory of homologous series of dendronized polymersJ. Am. Chem. Soc 131 2009 11841CrossRefGoogle Scholar
Sugiura, K.-I.Tanaka, H.Matsumoto, T.Kawai, T.Sakata, Y.A Mandala-patterned bandanna-shaped porphyrin oligomer, C1244H1350N84Ni20O88, having a unique size and geometryChemistry Letters 1999 1193CrossRefGoogle Scholar
Boydston, A. J.Holcombe, T. W.Unruh, D. A.Fréchet, J. M. J.Grubbs, R. H.A direct route to cyclic organic nanostructures via ring-expansion metathesis polymerization of dendronized macromonomersJ. Am. Chem. Soc 131 2009 5388CrossRefGoogle Scholar
Tomalia, D. A.Huang, B.Swanson, D. R.Brothers II, H. M.Klimash, J. W.Structure control within poly(amidoamine) dendrimers: size, shape and regio-chemical mimicry of globular proteinsTetrahedron 59 2003 3799CrossRefGoogle Scholar
Demattei, C. R.Huang, B.Tomalia, D. A.Designed dendrimers syntheses by self-assembly of single-site, ssDNA functionalized dendronsNanoLetters 4 2004 771CrossRefGoogle Scholar
Choi, Y.Thomas, T.Kotlyar, A.Islam, M. T.Baker, J. R.Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targetingChemistry & Biology 12 2005 35CrossRefGoogle ScholarPubMed
Tomalia, D. A.Dewald, J. R.Hall, M. J.Martin, S. J.Smith, P. B. 1984
Tomalia, D. A.Baker, H.Dewald, J.A new class of polymers: Starburst dendritic macromoleculesPolym. J. (Tokyo) 17 1985 117CrossRefGoogle Scholar
Tomalia, D. A.Uppuluri, S.Swanson, D. R.Li, J.Dendrimers as reactive modules for the synthesis of new structure controlled, higher complexity megamersPure Appl. Chem 72 2000 2343CrossRefGoogle Scholar
Tomalia, D. A. 1988
Grinstaff, M. W.Dendritic macromers for hydrogel formation: tailored materials for ophthalmic, orthopaedic, and biotech applicationsJ. of Polymer Science: Part A: Polymer Chemistry 46 2008 383CrossRefGoogle Scholar
Cheng, Z.Thorek, K. L. J.Tsourkas, A.Gadolinium-conjugated dendrimer nano clusters as a tumor-targeted T1 magnetic resonance imaging contrast agentAngew Chem. Int 49 2010 346CrossRefGoogle Scholar
Caminade, A.-M.Servin, P.Laurent, R.Majoral, J.-P.Dendrimeric phosphines in asymmetric catalysisChem. Soc. Rev 37 2008 56CrossRefGoogle ScholarPubMed
Astruc, D.Chardac, F.Dendritic catalysts and dendrimers in catalysisChem. Rev 101 2001 2991CrossRefGoogle ScholarPubMed
Balzani, V.Credi, A.Venturi, M.Molecular Devices and Machines – Concepts and Perspectives for the NanoworldWeinheimWiley-VCH 2008Google Scholar
Newkome, G. R.He, E.Moorefield, C. N.Suprasupermolecules with novel properties: metallodendrimersChem. Rev 99 1999 1689CrossRefGoogle ScholarPubMed
Wang, L.Yamauchi, Y.Block copolymer mediated synthesis of dendritic platinum nano particlesJ. Am. Chem. Soc 131 2009 9152CrossRefGoogle Scholar
Lothian-Tomalia, M. K.Hedstrand, D. M.Tomalia, D. A.A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly(thioether) dendrimers. Amplified, genealogical directed synthesis leading to the de Gennes dense packed stateTetrahedron 53 1997 15495CrossRefGoogle Scholar
Tomalia, D. A.Naylor, A. M.Goddard, W. A.Starburst dendrimers: molecular level control of size, shape, surface chemistry, topology and flexibility from atoms to macroscopic matterAngew. Chem. Int. Ed. Engl 29 1990 138CrossRefGoogle Scholar
Tomalia, D. A.Durst, H. D.Weber, EWSupramolecular Chemistry I – Directed Synthesis and Molecular RecognitionBerlin/HeidelbergSpringer Verlag 1993Google Scholar
Hecht, S.Fréchet, J. M. J.Dendritic encapsulation of function: applying nature’s site isolation principle from biomimetics to materials scienceAngew. Chem. Int. Ed 40 2001 743.0.CO;2-C>CrossRefGoogle ScholarPubMed
Rosen, B. M.Wilson, C. J.Wilson, D. A.Dendron-mediated self-assembly, disassembly, and self-organization of complex systemsChem. Rev 109 2009 6275CrossRefGoogle ScholarPubMed
Darbre, T.Reymond, J.-L.Peptide dendrimers as artificial enzymes, receptors, and drug-delivery agentsAcc. Chem. Res 39 2006 925CrossRefGoogle ScholarPubMed
Percec, V.Cho, W.-D.Mosier, P. E.Ungar, G.Yeardley, D. J. P.Structural analysis of cylindrical and spherical supramolecular dendrimers quantifies the concept of monodendron shape control by generation numberJ. Am. Chem. Soc 120 1998 11061CrossRefGoogle Scholar
Gopidas, K. R.Whitesell, J. K.Fox, M. A.Nanoparticle-cored dendrimers: synthesis and characterizationJ. Am. Chem. Soc 125 2003 6491CrossRefGoogle ScholarPubMed
Gopidas, K. R.Whitesell, J. K.Fox, M. A.Metal-core-organic shell dendrimers as unimolecular micellesJ. Am. Chem. Soc 125 2003 14168CrossRefGoogle ScholarPubMed
Huang, B.Tomalia, D. A.Dendronization of gold and CdSe/CdS (core-shell) quantum dots with Tomalia type, thiol core, functionalized poly(amidoamine) (PAMAM) dendronsJournal of Luminescence 111 2005 215CrossRefGoogle Scholar
Wang, Y. A.Li, J. J.Peng, X.Stabilization of inorganic nanocrystals by organic dendronsJ. Am. Chem. Soc 124 2002 2293CrossRefGoogle ScholarPubMed
Huang, B.Tomalia, D. A.Poly(ether) dendrons possessing phosphine focal points for stabilization and reduced quenching of luminescent quantum dotsInorganica Acta 2006CrossRefGoogle Scholar
Daniel, M.-C.Ruiz, J.Astruc, D.Supramolecular H-bonded assemblies of redox-active metallodendrimers and positive and unusual dendritic effects on the recognition of H2PO4J. Am. Chem. Soc 125 2003 1150CrossRefGoogle ScholarPubMed
Daniel, M.-C.Ruiz, J.Nlate, S.Blais, J.-C.Astruc, D.Nanoscopic assemblies between supramolecular redox active metallodendrons and gold nano particles: synthesis, characterization and selective recognition of H2PO4 – HSO4, and adenosine-5′-triphosphate (ATP2-) anionsJ. Am. Chem. Soc 125 2003 2617CrossRefGoogle Scholar
Daniel, M.-C.Ruiz, J.Nlate, S.Gold nano particles containing redox-active supramolecular dendrons that recognize H2PO4−Chem. Commun 2001 2000CrossRefGoogle Scholar
Jiang, D.-L.Aida, T.Morphology-dependent photochemical events in aryl ether dendrimer porphyrins: cooperation of dendron subunits for singlet energy transductionJ. Am. Chem. Soc. 120 1998 10895CrossRefGoogle Scholar
Jiang, D.-L.Aida, T.Photoisomerization in dendrimers by harvesting of low-energy photonsNature 388 1997 454CrossRefGoogle Scholar
Adronov, A.Fréchet, J. M. J.Light-harvesting dendrimersChem. Commun. 2000 1701CrossRefGoogle Scholar
Balzani, V.Ceroni, P.Maestri, M.Vicinelli, V.Light-harvesting dendrimersCurrent Opinion in Chemical Biology 7 2003 657CrossRefGoogle ScholarPubMed
Li, W.-S.Aida, T.Dendrimer porphyrins and phthalocyaninesChem. Rev. 109 2009 6047CrossRefGoogle ScholarPubMed
Maes, W.Dehaen, W.Synthetic aspects of porphyrin dendrimersEur. J. Org. Chem. 28 2009 4719CrossRefGoogle Scholar
Bashir-Hashemi, A.Hart, H.Ward, D. L.Tritriptycene: A D3h C62 hydrocarbon with three u-shaped cavitiesJ. Am. Chem. Soc. 108 1986 6675CrossRefGoogle Scholar
Hart, H.Bashir-Hashemi, A.Luo, J.Meador, M. A.IptycenesTetrahedron 42 1986 1641CrossRefGoogle Scholar
Miller, T. M.Neenan, T. X.Zayas, R.Bair, H. E.Synthesis and characterization of a series of monodisperse, 1,3,5-phenylene-based hydrocarbon dendrimers including C276H186 and their fluorinated analogsJ. Am. Chem. Soc. 114 1992 1018CrossRefGoogle Scholar
Andreitchencko, E. V.Clark, C. G.Bauer, R. E.Lieser, G.Mullen, K.Pushing the synthetic limit: polyphenylene dendrimers with “exploded” branch units – 22-nm-diameter, monodisperse, stiff macromoleculesAngew. Chem. Int. Ed 44 2005 6348CrossRefGoogle Scholar
Xu, Z.Kahr, M.Walker, K. L.Wilkins, C. L.Moore, J. S.Phenylacetylene dendrimers by the divergent, convergent and double stage convergent methodsJ. Am. Chem. Soc. 116 1994 4537CrossRefGoogle Scholar
Niederhafner, P.Reinis, M.Sebestik, J.Jezek, J.Glycopeptide dendrimers, Part III – a review: use of glycopeptide dendrimers in immunotherapy and diagnosis of cancer and viral diseasesJ. Pept. Sci 14 2008 556CrossRefGoogle Scholar
Niederhafner, P.Sebestik, J.Jezek, J.Glycopeptide dendrimers. Part IIJ. Pept. Sci 14 2008 44CrossRefGoogle ScholarPubMed
Niederhafner, P.Sebestik, J.Jezek, J.Glycopeptide dendrimers. Part IJ. Pept. Sci 14 2008 2CrossRefGoogle ScholarPubMed
Sebestik, J.Niederhafner, P.Jezek, J.Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applicationsAmino Acids 40 2011 301CrossRefGoogle ScholarPubMed
Crespo, L.Sanclimens, G.Pons, M.Peptide and amide bond-containing dendrimersChem. Rev. 105 2005 1663CrossRefGoogle ScholarPubMed
Sadler, K.Tam, J. P.Peptide dendrimers: applications and synthesisRev. in Molecular Biotechnology 90 2002 195CrossRefGoogle ScholarPubMed
Nilsen, T. W.Grayzel, J.Prenzel, W.Dendritic nucleic acid structuresJ. Theor. Biol 187 1997 273CrossRefGoogle ScholarPubMed
Hudson, R. H. E.Damha, M. J.Nucleic acid dendrimers: novel biopolymer structuresJ. Am. Chem. Soc. 115 1993 2119CrossRefGoogle Scholar
Ashton, P. R.Balzani, V.Clemente-Leon, M.Ferrocene-containing carbohydrate dendrimersChem. Eur. J 8 2002 6733.0.CO;2-D>CrossRefGoogle ScholarPubMed
Chabre, Y. M.Roy, R.Design and creativity in synthesis of multivalent neoglycoconjugatesAdvances in Carbohydrate Chemistry and Biochemistry 63 2010 165CrossRefGoogle ScholarPubMed
Lambert, J. G.Pflug, J. L.Stern, C. L.Synthesis and structure of a dendritic polysilaneAngew. Chem. Int. Ed. Engl 34 1995 98CrossRefGoogle Scholar
Suzuki, H.Kimata, Y.Satoh, S.Kuriyama, A.Polysilane dendrimer. Synthesis and characterization of [2,2-(Me3Si)2Si3Me5]3SiMeChemistry Letters 1995CrossRefGoogle Scholar
Yamamoto, K.Higuchi, M.Shiki, S.Tsurata, M.Chiba, H.Stepwise radial complexation of imine groups in phenylazomethine dendrimersNature 415 2002 509CrossRefGoogle ScholarPubMed
Cardona, C. M.Kaifer, A. E.Asymmetric redox-active dendrimers containing a ferrocene subunit. Preparation, characterization, and electrochemistryJ. Am. Chem. Soc. 120 1998 4023CrossRefGoogle Scholar
Dandliker, P. J.Diederich, F.Gisselbrecht, A.Louati, A.Gross, M.Water-soluble dendritic iron porphyrins: synthetic models of globular heme proteinsAngew. Chem. Intl. Ed. Engl 34 1995 2725CrossRefGoogle Scholar
Newkome, G. R.Moorfield, C. N.Baker, G. R.Saunders, M. J.Grossman, S. H.Unimolecular micellesAngew. Chem. Int. Ed 30 1991 1178CrossRefGoogle Scholar
Albrecht, M.Gossage, R. A.Spek, A. L.Van Koten, G.Sulfur dioxide gas detection by reversible n1-SO2-Pt bond formation as a novel application for periphery functionalized metallo-dendrimersChem. Commun. 1998 1003CrossRefGoogle Scholar
Balzani, V.Campagna, S.Denti, G.Designing dendrimers based on transition-metal complexes. Light-harvesting properties and predetermined redox patternsAcc. Chem. Res 31 1998 26CrossRefGoogle Scholar
Zhao, M.Sun, L.Crooks, R. M.Preparation of Cu nano clusters within dendrimer templatesJ. Am. Chem. Soc. 120 1998 4877CrossRefGoogle Scholar
Tomalia, D. A.Balogh, L. 2003
Tomalia, D. A.Balogh, L. 2003
Balogh, L.Tomalia, D. A.Poly(amidoamine) dendrimer-templated nanocomposites 1. Synthesis of zero valent copper nanosclustersJ. Am. Chem. Soc. 120 1998 7355CrossRefGoogle Scholar
Yamamoto, K.Imaoka, T.Chun, W.-J.Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactionsNature Chemistry 1 2009 397CrossRefGoogle ScholarPubMed
Boisselier, E.Diallo, A. K.Salmon, L.Encapsulation and stabilization of gold nanoparticles with “click” polyethyleneglycol dendrimersJ. Am. Chem. Soc. 132 2010 2729CrossRefGoogle ScholarPubMed
Wolinsky, J. B.Grinstaff, M. W.Therapeutic and diagnostic applications of dendrimers for cancer treatmentAdvanced Drug Delivery Reviews 60 2008 1037CrossRefGoogle ScholarPubMed
Iha, R. K.Wooley, K. L.Nystrom, A. M.Applications of orthogonal “click” chemistries in the synthesis of functional soft materialsChem. Rev. 109 2009 5620CrossRefGoogle ScholarPubMed
Newkome, G. R.Shreiner, C.Dendrimers derived from 1–3 branching motifsChem. Rev. 110 2010 6338CrossRefGoogle ScholarPubMed
Newkome, G. R.Shreiner, C. D.Poly(amidoamine), polypropyleneimine, and related dendrimers and dendrons possessing different 1 to 2 branching motifs: an overview of the divergent proceduresPolymer 49 2008 1CrossRefGoogle Scholar
Astruc, D.Ruiz, J.Organoiron-mediated dendrimer syntheses with 1→3 connectivity and applicationsTetrahedron 66 2010 1769CrossRefGoogle Scholar
Tomalia, D. A.Hall, M.Hedstrand, D. M.Starburst dendrimers III. The importance of branch junction symmetry in the development of topological shell moleculesJ. Am. Chem. Soc. 109 1987 1601CrossRefGoogle Scholar
Boisselier, E.Liang, L.Dalko-Csiba, M.Ruiz, J.Astruc, D.Interaction and encapsulation of vitamins C, B3, and B6 with dendrimers in waterChem. Eur. J 16 2010 6056CrossRefGoogle Scholar
Gauthier, M.Möller, M.Uniform highly branched polymers by anionic grafting: Arborescent graft polymersMacromolecules 24 1991 4548CrossRefGoogle Scholar
Tomalia, D. A.Hedstrand, D. M.Ferrito, M. S.COMBBURST™ dendrimers – a new macromolecular architectureMacromolecules 24 1991 1435CrossRefGoogle Scholar
Teertstra, S. J.Gauthier, M.Dendrigraft polymers: macromolecular engineering on a mesoscopic scaleProg. Polym. Sci 29 2004 277CrossRefGoogle Scholar
Angot, S.Taton, D.Gnanou, Y.Amphiphilic stars and dendrimer-like architectures based on poly(ethylene oxide) and polystyreneMacromolecules 33 2000 5418CrossRefGoogle Scholar
Taton, D.Feng, X.Gnanou, Y.Dendrimer-like polymers: a new class of structurally precise dendrimers with macromolecular generationsNew. J. Chem 31 2007 1097CrossRefGoogle Scholar
Trollsa.s, M.Hedrick, J. L.Dendrimer-like star polymersJ. Am. Chem. Soc. 120 1998 4644CrossRefGoogle Scholar
Matmour, R.Gnanou, Y.Combination of an anionic terminator multifunctional initiator and divergent carbanionic polymerization: application to the synthesis of dendrimer-like polymers and of asymmetric and miktoarm starsJ. Am. Chem. Soc. 130 2008 1350CrossRefGoogle ScholarPubMed
Li, W.Wu, D.Schluter, A. D.Zhang, A.Synthesis of an oligo(ethylene glycol)-based third-generation thermoresponsive dendronized polymerJ. Polym. Sci.: Part A: Polym. Chem 47 2009 6630CrossRefGoogle Scholar
Li, W.Zhang, A.Feldman, K.Walde, P.Schluter, A. D.Thermoresponsive dendronized polymersMacromolecules 41 2008 3659CrossRefGoogle Scholar
Li, W.Zhang, A.Schluter, A. D.Thermoresponsive dendronized polymers with tunable lower critical solution temperaturesChem. Commun. 2008 5523CrossRefGoogle ScholarPubMed
Hutchings, L.DendriMacs and HyperMacs – emerging as more than just model branched polymersSoft Matter 4 2008 2150CrossRefGoogle Scholar
Boyd, B. J.Kaminskas, L. M.Karellas, P.cationic poly-l-lysine dendrimers: pharmacokinetics, biodistribution, and evidence for metabolism and bioresorption after intravenous administration to ratsMol. Pharm 3 2006 614CrossRefGoogle ScholarPubMed
Besenius, P.Portale, G.Bomans, P. H. H.Controlling the growth and shape of chiral supramolecular polymers in waterPNAS 107 2010 17888CrossRefGoogle ScholarPubMed
Peerlings, H. W. I.Struijk, M. P.Meijer, E. W.Chiral objects with a dendritic architectureChirality 10 1998 46CrossRefGoogle Scholar
Pittelkow, M.Brock-Nannestad, T.Moth-Poulsen, K.Christensen, J. B.Chiral dendrimer encapsulated Pd and Rh nano particlesChem. Commun. 2008 2358CrossRefGoogle Scholar
Rudick, J. G.Percec, V.Helical chirality in dendronized polyarylacetylenesNew J. Chem 31 2007 1083CrossRefGoogle Scholar
Villaraza, A. J. L.Bumb, A.Brechbiel, M. W.Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokineticsChem. Rev. 110 2010 2921CrossRefGoogle ScholarPubMed
Kobayashi, H.Ogawa, M.Alford, R.Choyke, P. L.Urano, Y.New strategies for fluorescent probe design in medical diagnostic imagingChem. Rev. 110 2010 2620CrossRefGoogle ScholarPubMed
Lambert, J. B.Kang, S.-H.Ma, K.Liu, C.Condie, A. G.Synthesis of calixarene-capped carbosilane dendrimersJ. Org. Chem 74 2009 2527CrossRefGoogle ScholarPubMed
Caminade, A.-M.Hameau, A.Majoral, J.-P.Multicharged and/or water-soluble fluorescent dendrimers: properties and usesChem. Eur. J 15 2009 9270CrossRefGoogle ScholarPubMed
Haba, Y.Harada, A.Takagishi, T.Kono, K.Rendering poly(amidoamine) or poly(propyleneimine) dendrimers temperature sensitiveJ. Am. Chem. Soc. 126 2004 12760CrossRefGoogle Scholar
Chen, C. Z.Beck-Tan, N. C.Dhurjati, P.Quaternary ammonium functionalized poly(propylene imine) dendrimer as effective antimicrobials: structure – activity studiesBiomacromolecules 1 2000 473CrossRefGoogle ScholarPubMed
Mintzer, M. A.Grinstaff, M. W.Biomedical applications of dendrimers: a tutorialChem. Soc. Rev 40 2011 173CrossRefGoogle ScholarPubMed
Ornelas, C.Ruiz, J.Belin, C.Astruc, D.Giant dendritic molecular electrochrome batteries with ferrocenyl and pentamethylferrocencyl terminiJ. Am. Chem. Soc. 131 2009 590CrossRefGoogle ScholarPubMed
Cho, M. J.Choi, D. H.Sullivan, P. A.Akelaitis, A. J. P.Dalton, L. R.Recent progress in second-order nonlinear optical polymers and dendrimersProg. in Polym. Sci 33 2008 1010CrossRefGoogle Scholar
Miller, L. L.Duan, R. G.Tully, D. C.Tomalia, D. A.Electrically conducting dendrimersJ. Am. Chem. Soc. 119 1997 1005CrossRefGoogle Scholar
Tekade, R. K.Kumar, P. V.Jain, N. K.Dendrimers in oncology: an expanding horizonChem. Rev. 109 2009 49CrossRefGoogle Scholar
Menjoge, A. R.Kannan, R. M.Tomalia, D. A.Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applicationsDrug Discovery Today 15 2010 171CrossRefGoogle ScholarPubMed
Boas, U.Christensen, J. B.Heegaard, P. M. H.Dendrimers in Medicine and BiotechnologyCambridge UK:The Royal Society of Chemistry 2006Google Scholar
Klajnert, B.Bryszewska, M.Dendrimers in MedicineNew YorkNova Science Publishers, Inc. 2007Google Scholar
Caminade, A.-M.Laurent, R.Majoral, J.-P.Characterization of dendrimersAdvanced Drug Delivery Reviews 57 2005 2130CrossRefGoogle ScholarPubMed
Mintzer, M. A.Simanek, E. E.Noviral vectors for gene deliveryChem. Rev. 109 2009 259CrossRefGoogle Scholar
Kobayashi, H.Brechbiel, M. W.Nano-sized MRI contrast agents with dendrimer coresAdvanced Drug Delivery Reviews 57 2005 2271CrossRefGoogle ScholarPubMed
Cho, S.Li, W.-S.Yoon, M.-C.Relationship between incoherent excitation energy migration processes and molecular structures in zinc(II) porphyrin dendrimersChem. Eur. J 12 2006 7576CrossRefGoogle ScholarPubMed
Boas, U.Heegaard, P. M. H.Dendrimers in drug researchChem. Soc. Rev 33 2004 43CrossRefGoogle ScholarPubMed
Baars, M. W. P. L.Karlsson, A. J.Sorokin, V.De Waal, B. F. W.Meijer, E. W.Supramolecular modification of the periphery of dendrimers resulting in rigidity and functionalityAngew. Chem. Int. Ed. 39 2000 42623.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Rudick, J. G.Percec, V.Induced helical backbone conformations of self-oganizable dendronized polymersAccts. Chem. Res 41 2008 1641CrossRefGoogle ScholarPubMed
Nguyen, Q. T.Olson, E. S.Aguilera, T. A.Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survivalProc. of the National Acad. of Sci 107 2010 4317CrossRefGoogle ScholarPubMed
Olson, E. S.Jiang, T.Aguilera, T. A.Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteasesProc. of the National Acad. of Sci 107 2010 4311CrossRefGoogle Scholar
Graulich, N.Hopf, H.Schreiner, P. R.Heuristic thinking makes a chemist smartChem. Soc. Rev. 39 2010 1503CrossRefGoogle ScholarPubMed
Tomalia, D. A.Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistryAldrichimica Acta 37 2004 39Google Scholar
Tomalia, D. A.Starburst/cascade dendrimers: fundamental building blocks for a new nanoscopic chemistry setAdv. Mater 6 1994 529CrossRefGoogle Scholar
Tomalia, D. A.Baker, H.Dewald, J.Dendritic macromolecules: synthesis of Starburst dendrimersMacromolecules 19 1986 2466CrossRefGoogle Scholar
Van Der Made, A. W.Van Leeuwen, P. W. N. M.De Wilde, J. C.Brandes, R. A. C.Dendrimeric silanesAdv. Mater 5 1993 466CrossRefGoogle Scholar
Majoral, J.-P.Caminade, A.-M. 1998
De Gennes, P. G.Hervet, H. J.Statistics of starburst polymersJ. Physique-Lett. (Paris) 44 1983 351CrossRefGoogle Scholar
Ruiz, J.Lafuente, G.Marcen, S.Construction of giant dendrimers using a tripodal building blockJ. Am. Chem. Soc. 125 2003 7250CrossRefGoogle ScholarPubMed
Tomalia, D. A.Berry, V.Hall, M.Hedstrand, D. M.Starburst dendrimers IV. Covalently fixed unimolecular assemblages reminiscent of spheroidal micellesMacromolecules 20 1987 1164CrossRefGoogle Scholar
Pistolis, G.Malliaris, A.Paleos, C. M.D. Tsiourvas, Study of poly(amidoamine) Starburst dendrimers by fluorescence probingLangmuir 13 1997 5870CrossRefGoogle Scholar
Watkins, D. M.Sayed-Sweeet, Y.Klimash, J. W.Turro, N. J.Tomalia, D. A.Dendrimers with hydrophobic cores and the formation of supramolecular dendrimer-surfactant assembliesLangmuir 13 1997 3136CrossRefGoogle Scholar
Hawker, C. J.Wooley, K. L.Fréchet, J. M. J.Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilizing agentsJ. Chem. Soc., Perkin Trans. I 1993 1287CrossRefGoogle Scholar
Kleinman, M. H.Flory, J. H.Tomalia, D. A.Turro, N. J.Effect of protonation and PAMAM dendrimer size on the complexation and dynamic mobility of 2-naphtholJ. Phys. Chem. B B104 2000 11472CrossRefGoogle Scholar
Caminade, A.-M.Majoral, J. P.Water-soluble phosphorus-containing dendrimersProgr. Polym. Sci 30 2005 491CrossRefGoogle Scholar
Sayed-Sweet, Y.Hedstrand, D. M.Spindler, R.Tomalia, D. A.Hydrophobically modified poly(amidoamine) (PAMAM) dendrimers: their properties at the air-water interface and use as nanoscopic container moleculesJ. Mater. Chem 7 1997 1199CrossRefGoogle Scholar
Adronov, A.Gilat, S. L.Fréchet, J. M. J.Light harvesting and energy transfer in laser – dye-labeled poly(aryl ether) dendrimersJ. Am. Chem. Soc. 122 2000 1175CrossRefGoogle Scholar
Kawa, M.Fréchet, J. M. J.Self-assembled lanthanide-cored dendrimer complexes: enhancement of the luminescence properties of lanthanide ions through site-isolation and antenna effectsChem. Mater 10 1998 286CrossRefGoogle Scholar
Thompson, A. L.Gaab, K. M.Xu, J.Bardeen, C. J.Martinez, T. J.Variable electronic coupling in phenylacetylene dendrimers: the role of Forster, Dexter and charge-transfer interactionsJ. Phys. Chem. A 108 2004 671CrossRefGoogle Scholar
Murphy, C. B.Zhang, Y.Troxler, T.Probing Förster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensorsJ. Phys. Chem. B 108 2004 1537CrossRefGoogle Scholar
Mor, G. K.Basham, J.Paulose, M.High-efficiency Forster resonance energy transfer in solid-state dye sensitized solar cellsNano Letters 10 2010 2387CrossRefGoogle ScholarPubMed
Xu, Z.Moore, J. S.Synthesis and characterization of a high molecular weight stiff dendrimerAngew. Chem. Int. Ed. 32 1993 246CrossRefGoogle Scholar
Bharathi, P.Patel, U.Kawaguchi, T.Pesak, D. J.Moore, J. S.Improvements in the synthesis of phenylacetylene monodendrons including a solid-phase convergent methodMacromolecules 28 1995 5955CrossRefGoogle Scholar
Morgenroth, F.Berresheim, A. J.Wagner, M.Mullen, K.Spherical polyphenylene dendrimers via Diels-Alder reactions: the first example of an A4B building block in dendrimer chemistryChem. Commun. 1998 1139CrossRefGoogle Scholar
Wiesler, U.-M.Berresheim, A. J.Morgenroth, F.Lieser, G.Mullen, K.Divergent synthesis of polyphenylene dendrimers: the role of core and branching reagents upon size and shapeMacromolecules 34 2001 187CrossRefGoogle Scholar
Wiesler, U.-M.Weil, T.Mullen, K.Vögtle, FTopics in Current Chemistry: Dendrimers III: Design, Dimension, FunctionBerlinSpringer-Verlag 2001 1Google Scholar
Issberner, J.Vogtle, V.De Cola, L.Balzani, V.Dendritic bipyridine ligands and their tris(bipyridine)rutheneium(II) chelates – syntheses, absorption spectra and photophysical propertiesChem. Eur. J 3 1997 706CrossRefGoogle Scholar
Stewart, G. M.Fox, M. A.Chromophore-labeled dendrons as light harvesting antennaeJ. Am. Chem. Soc. 118 1996 4384CrossRefGoogle Scholar
Cifuentes, M. P.Powell, C. E.Morrall, J. P.Electrochemical, spectroelectrochemical, and molecular quadratic and cubic nonlinear optical properties of alkynylruthenium dendrimersJ. Am. Chem. Soc. 128 2006 10819CrossRefGoogle ScholarPubMed
Piotti, M. E.Rivera, F.Bond, R.Hawker, C. J.Frèchet, J. M. J.Synthesis and catalytic activity of unimolecular dendritic reverse micelles with “internal” functional groupsJ. Am. Chem. Soc. 121 1999 9471CrossRefGoogle Scholar
Tomalia, D. A.Fréchet, J. M. J.Discovery of dendrimers and dendritic polymers: a brief historical perspectiveJ. of Polym. Sci.: Part A: Polym. Chem 40 2002 2719CrossRefGoogle Scholar
Odian, G.Principles of PolymerizationNew YorkWiley-Interscience 2004CrossRefGoogle Scholar
Fréchet, J. M. J.Functional polymers and dendrimers: reactivity, molecular architectures, and interfacial energyScience 263 1994 1710CrossRefGoogle Scholar
Gillies, E. R.Fréchet, J. M. J.Designing macromolecules for therapeutic applications: Polyester dendrimer – poly(ethylene oxide) “bow tie” hybrids with tunable molecular weight & architecturesJ. Am. Chem. Soc. 124 2002 14137CrossRefGoogle Scholar
Bo, Z.Schafer, A.Franke, P.Schluter, A. D.A facile synthetic route to a third-generation dendrimer with generation-specific functional aryl bromidesOrganic Letters 2 2000 1645CrossRefGoogle ScholarPubMed
Grayson, S.Fréchet, J. M. J.Convergent dendrons and dendrimers: from synthesis to applicationsChem. Rev. 101 2001 3819CrossRefGoogle ScholarPubMed
Lee, J. W.Kim, B.-K.Kim, H. J.Convergent synthesis of symmetrical and unsymmetrical PAMAM dendrimersMacromolecules 39 2006 2418CrossRefGoogle Scholar
Malenfant, P. R. L.Fréchet, J. M. J.Fréchet, JMJTomalia, DADendrimers and Other Dendritic PolymersChichesterWiley 2001Google Scholar
Majoros, I. J.Williams, C. R.Tomalia, D. A.Baker, J. R.New dendrimers: synthesis and characterization of POPAM-PAMAM hybrid dendrimersMacromolecules 41 2008 8372CrossRefGoogle ScholarPubMed
Kannaiyan, D.T. Imae, pH-dependent encapsulation of pyrene in PPI-core: PAMAM-shell dendrimersLangmuir 25 2009 5282CrossRefGoogle Scholar
Hawker, C. J.Fréchet, J. M. J.Unusual macromolecular architectures: the convergent growth approach to dendritic polyesters and novel block copolymersJ. Am. Chem. Soc. 4 1992 8405CrossRefGoogle Scholar
Percec, V.Wilson, D. A.Leowanawat, P.Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architecturesScience 328 2010 1009CrossRefGoogle ScholarPubMed
Balogh, L.De Leuze-Jallouli, A.Dvornic, P.Architectural copolymers of PAMAM dendrimers and ionic polyacetylenesMacromolecules 32 1999 1036CrossRefGoogle Scholar
Gitsov, I.Hybrid linear dendritic macromolecules: From synthesis to applicationsJ. Polym. Sci.: Part A: Polym. Chem 46 2008 5295CrossRefGoogle Scholar
Fox, M. E.Szoka, F. C.Fréchet, J. M. J.Soluble polymer carriers for the treatment of cancer: the importance of molecular architectureAccounts of Chemical Research 42 2009 1141CrossRefGoogle ScholarPubMed
Gitsov, I.Wooley, K. L.Fréchet, J. M. J.Novel polyether copolymers consisting of linear and dendritic blocksAngew. Chem. Int. Ed. 31 1992 1200CrossRefGoogle Scholar
Gitsov, I.Wooley, K. L.Hawker, C. J.Ivanova, P. T.Fréchet, J. M. J.Synthesis and properties of novel linear-dendritic block copolymers. Reactivity of dendritic macromolecules toward linear polymersMacromolecules 26 1993 5621CrossRefGoogle Scholar
Gitsov, I.Simonyan, A.Vladimirov, N. G.Synthesis of novel asymmetric dendritic-linear-dendritic block copolymers via “living” anionic polymerization of ethylene oxide initiated by dendritic macroinitiatorsJ. Polym. Sci. Part A: Polym. Chem. 45 2007 5136CrossRefGoogle Scholar
Gitsov, I.Fréchet, J. M. J.Novel nanoscopic architectures. Linear-globular ABA copolymers with polyether dendrimers as A blocks and polystyrene as B blockMacromolecules 27 1994 7309CrossRefGoogle Scholar
Gitsov, I.Fréchet, J. M. J.Stimuli-responsive hybrid macromolecules: Novel amphiphilic star copolymers with dendritic groups at the peripheryJ. Am. Chem. Soc. 118 1996 3785CrossRefGoogle Scholar
Gitsov, I.Ivanova, P. T.Fréchet, J. M. J.Dendrimers as macroinitiators for anionic ring-opening polymerization. Polymerization of ε-caprolactoneMacromolecular Rapid Communications 15 1994 387CrossRefGoogle Scholar
Iyer, J.Fleming, K.Hammond, P. T.Synthesis and solution properties of new linear-dendritic diblock copolymersMacromolecules 31 1998 8757CrossRefGoogle Scholar
Tomalia, D. A.Ciferri, A.Supramolecular PolymersBoca RatonCRC Press, Taylor & Francis Group 2005Google Scholar
Gillies, E. R.Fréchet, J. M. J.Synthesis and self-assembly of supramolecular dendritic “bow-ties”: effect of peripheral functionality on association constraintsJ. Org. Chem 69 2004 46CrossRefGoogle Scholar
Gillies, E. R.Dy, E.Fréchet, J. M. J.Szoka, F. C.Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architectureMolecular Pharmaceutics 2 2005 129CrossRefGoogle ScholarPubMed
Risch, B. G.Wilkes, G. L.Warakomski, J. M.Crystallization kinetics and morphological features of star-branched nylon-6: effect of branch-point functionalityPolymer 34 1993 2330CrossRefGoogle Scholar
Kojima, C.Kono, K.Maruyama, K.Takagishi, T.Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugsBioconjugate Chem 11 2000 910CrossRefGoogle ScholarPubMed
Kojima, C.Toi, Y.Kono, K.Preparation of poly(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapyBioconjugate Chem 18 2007 663CrossRefGoogle ScholarPubMed
Kojima, C.Regino, C. A. S.Umeda, Y.Kobayashi, H.Kono, K.Influence of dendrimer generation and polyethylene glycol length on the biodistribution of PEGylated dendrimersInt. J. Pharmaceutics 383 2010 293CrossRefGoogle ScholarPubMed
Kono, K.Kojima, C.Hayashi, N.Preparation and cytotoxic activity of poly(ethylene glycol)-modified poly(amidoamine) dendrimers bearing adriamycinBiomaterials 29 2008 1664CrossRefGoogle ScholarPubMed
Hedden, R. C.Bauer, B. J.Structure and dimensions of PAMAM/PEG dendrimer-star polymersMacromolecules 36 2003 1829CrossRefGoogle Scholar
Kojima, C.Tsumura, S.Harada, A.Kono, K.A collagen-mimic dendrimer capable of controlled releaseJ. Am. Chem. Soc. 131 2009 6052CrossRefGoogle ScholarPubMed
Suehiro, T.Kojima, C.Tsumura, S.Harada, A.Kono, K.Higher order structure of short collagen model peptides attached to dendrimers and linear polymersBiopolymers 93 2010 640CrossRefGoogle ScholarPubMed
White, M. A.Johnson, J. A.Koberstein, J. T.Turro, N. J.Toward the syntheses of universal ligands for metal oxide surfaces: Controlling surface functionality through click chemistryJ. Am. Chem. Soc. 128 2006 11356CrossRefGoogle ScholarPubMed
Schluter, A.-D.Rabe, P. J.Dendronized polymers: synthesis, characterization, assembly at interfaces and manipulationAngew. Chem. Int. Ed. 39 2000 8653.0.CO;2-E>CrossRefGoogle ScholarPubMed
Tomalia, D. A.Kirchoff, P. M. 1987
Freudenberger, R.Claussena, W.Schluter, A.-D.Wallmeier, H.Functionalized rod-like polymers: one-dimensional rigid matricesPolymer 35 1994 4496CrossRefGoogle Scholar
Percec, V.Heck, J.Tomazos, D.Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(p-dodecyloxybenzyloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar mesophaseChem. Soc., Perkin Trans. 1 1993 2799CrossRefGoogle Scholar
Lee, C. C.Fréchet, J. M. J.Synthesis and conformations of dendronized poly(L-lysine)Macromolecules 39 2006 476CrossRefGoogle Scholar
Karakaya, B.Claussen, W.Gessler, K.Saenger, W.Schluter, A.-D.J. Am. Chem. Soc. 199 1997 3296CrossRef
Kwon, Y. K.Chvalun, S. N.Blackwell, J.Percec, V.Heck, J. A.Effect of temperature on the supramolecular tubular structure in oriented fibers of a poly(methacrylate) with tapered side groupsMacromolecules 28 1995 1552CrossRefGoogle Scholar
Percec, V.Ahn, C.-H.Cho, W.-D.Visualizable cylindrical macromolecules with controlled stiffness from backbones containing libraries of self-assembling dendritic side groupsJ. Am. Chem. Soc. 120 1998 8619CrossRefGoogle Scholar
Prokhorova, S. A.Sheiko, S. S.Ahn, C.-H.Percec, V.Möller, M.Molecular conformations of monodendron-jacketed polymers by scanning force microscopyMacromolecules 32 1999 2653CrossRefGoogle Scholar
Butler, P. G.The current picture of the structure and assembly of tobacco mosaic virusJ. Gen. Virol 65 1984 257CrossRefGoogle ScholarPubMed
Butler, P. G.Klug, A.The assembly of a virusSci. Am 239 1978 62Google ScholarPubMed
Percec, V.Ahn, C.-H.Barboiu, B.Self-encapsulation, acceleration and control in the radical polymerization of monodendritic monomers via self-assemblyJ. Am. Chem. Soc. 119 1997 12978CrossRefGoogle Scholar
Percec, V.Holerca, M. N.Uchida, U.Exploring and expanding the three-dimensional structural diversity of supramolecular dendrimers with the aid of libraries of alkali metals of their AB3 minidendritic carboxylatesChem. Eur. J. 8 2002 11063.0.CO;2-G>CrossRefGoogle Scholar
Hudson, S. D.Jung, H.-T.Percec, V.Direct visualization of individual cylindrical and spherical supramolecular dendrimersScience 278 1997 449CrossRefGoogle Scholar
Klug, A.The tobacco mosaic virus particle: structure and assemblyPhil. Trans. Roy. Soc. Lond. B 354 1999 531CrossRefGoogle Scholar
Rosen, B. M.Wilson, D. A.Wilson, C. J.Predicting the structure of supramolecular dendrimers via the analysis of libraries of AB3 and constitutional isomeric AB2 biphenylpropyl ether self-assembling dendronsJ. Am. Chem. Soc. 131 2009 17500CrossRefGoogle ScholarPubMed
Das, J.Fréchet, J. M. J.Chakraborty, A. K.Self-assembly of dendronized polymersJ. Phys. Chem. B 113 2009 13768CrossRefGoogle ScholarPubMed
Mynar, J. L.Choi, T. L.Yoshida, M.Doubly-dendronized linear polymersChem. Commun. 2005 5169CrossRefGoogle ScholarPubMed
Zimmerman, S. C.Quinn, J. R.Burakowska, E.Haag, R.Cross-linked glycerol dendrimers and hyperbranched polymers as ionophoric, organic nano particles soluble in water and organic solventsAngew. Chem. Int. Ed. 46 2007 8164CrossRefGoogle Scholar
Lemcoff, N. G.Spurlin, T. A.Gewirth, A. A.Organic nano particles whose size and rigidity are finely tuned by cross-linking the end groups of dendrimersJ. Am. Chem. Soc. 126 2004 11420CrossRefGoogle Scholar
O’Sullivan, M. C.Sprafke, J. K.Kondratuk, D. V.Vernier templating and synthesis of a 12-porphyrin nano-ringNature 469 2011 72CrossRefGoogle ScholarPubMed
Larpent, C.Genies, C.De Sousa Delgado, A. P.Giant dendrimer-like particles from nanolatexesChem. Commun. 2004 1816CrossRefGoogle ScholarPubMed
Swanson, D. R.Huang, B.Abdelbady, H. G.Tomalia, D. A.Unique steric and geometry induced stoichiometries observed in the divergent synthesis of poly(ester-acrylate) (PEA) dendrimersNew J. Chem 31 2007 1368CrossRefGoogle Scholar
Yu, D.Vladimirov, N.Fréchet, J. M. J.MALDI-TOF in the characterizations of dendritic-linear block copolymers and starsMacromolecules 32 1999 5186CrossRefGoogle Scholar
Fang, L.Olson, M. A.Benitez, D.Mechanically bonded macromoleculesChem. Soc. Rev 39 2010 17CrossRefGoogle ScholarPubMed
Fréchet, J. M. J.Gitsov, I.Macromol. Symp 98 1995 441CrossRef
Jiang, Z.-X.Yu, Y. B.Fluorous mixture synthesis of asymmetric dendrimersJ. Org. Chem 75 2010 2044CrossRefGoogle ScholarPubMed
Jiang, Z.-X.Liu, X.Jeong, E.-K.Yu, Y. B.Symmetry-guided design and fluorous synthesis of a stable and rapidly excreted imaging tracer for 19F MRIAngew. Chem. Int 48 2009 1CrossRefGoogle Scholar
Tomalia, D. A.Fluorine makes a differenceNature Materials 2 2003 711CrossRefGoogle ScholarPubMed
Percec, V.Glodde, M.Johansson, G.Balagurusamy, V. S. K.Heiney, P. A.Transformation of a spherical supramolecular dendrimer into a pyramidal columnar supramolecular dendrimer mediated by the fluorophobic effectAngew. Chem. Int. Ed. 42 2003 4338CrossRefGoogle ScholarPubMed
Van Hest, J. C. M.Delnoye, D. A. P.Baars, M. W. P. L.Van Genderen, M. H. P.Meijer, E. W.Polystyrene-dendrimer amphiphilic block copolymers with a generation-dependent aggregationScience 268 1995 1592CrossRefGoogle ScholarPubMed
Percec, V.Chu, P.Ungar, G.Zhou, J.Rational design of the first nonspherical dendrimer which displays calamitic nematic and smectic thermotropic liquid crystalline phasesJ. Am. Chem. Soc. 117 1995 11441CrossRefGoogle Scholar
Chooi, K. W.Gray, A. I.Tetley, L.Fan, Y.Uchegbu, I. F.The molecular shape of poly(propylenimine) dendrimer amphiphiles has profound effect on their self-assemblyLangmuir 26 2010 2301CrossRefGoogle ScholarPubMed
Israelachvili, J. N.Intermolecular and Surface ForcesSan DiegoAcademic Press 1992Google Scholar
Tomalia, D. A.Majoros, I.Dendrimeric supramolecular and supramacromolecular assembliesJ. of Macromolecular Science C43 2003 411CrossRefGoogle Scholar
Percec, V.Won, B. C.Peterca, M.Heiney, P. A.Expanding the structural diversity of self-assembling dendrons and supramolecular dendrimers via complex building blocksJ. Am. Chem. Soc. 129 2007 11265CrossRefGoogle ScholarPubMed
Naylor, A. M.Goddard, W. A.Keifer, G. E.Tomalia, D. A.Starburst dendrimers 5. Molecular shape controlJ. Am. Chem. Soc. 111 1989 2339CrossRefGoogle Scholar
Percec, V.Holerca, M. N.Uchida, S.Poly(oxazoline)s with tapered minidendritic side groups as models for the design of synthetic macromolecules with tertiary structure. A demonstration of the limitations of living polymerization in the design of 3-D structures based on single polymer chainsBiomacromolecules 2 2001 729CrossRefGoogle Scholar
Jackson, J. L.Chanzy, H. D.Booy, F. P.Visualization of dendrimer molecules by transmission electron microscopy (TEM): staining methods and cryo-TEM of vitrified solutionsMacromolecules 31 1998 6259CrossRefGoogle Scholar
Uppuluri, S.Piehler, L. T.Li, J.Core-shell tecto(dendrimers): I. Synthesis and characterization of saturated shell modelsAdv. Mater. 12 2000 7963.0.CO;2-1>CrossRefGoogle Scholar
Tomalia, D. A.Ciferri, A.Supramolecular PolymersNew YorkMarcel Deker 2000Google Scholar
Astruc, D.Boisselier, E.Ornelas, C.Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicineChem. Rev. 110 2010 1857CrossRefGoogle ScholarPubMed
Hawker, C. J.Fréchet, J. M. J.Preparation of polymers with controlled molecular architecture. a new convergent approach to dendritic macromoleculesJ. Am. Chem. Soc. 112 1990 7638CrossRefGoogle Scholar
Franc, G.Badetti, E.Colliere, V.Dendritic structures within dendritic structures: dendrimer-induced formation and self-assembly of nano particle networksNanoscale 1 2009 233CrossRefGoogle Scholar
Jain, K.Kesharwani, P.Gupta, U.Dendrimer toxicity: Let’s meet the challengeInt. J. Pharmaceutics 394 2010 122CrossRefGoogle ScholarPubMed
Newkome, G. R.Lin, X.Symmetrical, four-directional, poly(ether-amide) cascade polymersMacromolecules 24 1991 1443CrossRefGoogle Scholar
Launay, N.Caminade, A.-M.Lahana, R.Majoral, J. -P.A general synthetic strategy for neutral phosphorus-containing dendrimersAngew. Chem. Int. Ed 33 1994 1589CrossRefGoogle Scholar
Grimsdale, A. C.Vosch, T.Lor, M.Synthesis of and excited state processes in multichromophoric dendritic systemsJ. of Luminescence 111 2005 239CrossRefGoogle Scholar
Li, J.Tomalia, D. A.Fréchet, J. M. JTomalia, D. A.Dendrimers and other Dendritic PolymersChichesterWiley 2001Google Scholar
Yin, R.Zhu, Y.Tomalia, D. A.Architectural copolymers: rod-shaped, cylindrical dendrimersJ. Am. Chem. Soc 120 1998 2678CrossRefGoogle Scholar
Betley, T. A.Hessler, J. A.Mecke, A.Tapping mode atomic force microscopy investigation of poly(amidoamine) core-shell tecto(dendrimers) using carbon nanoprobesLangmuir 18 2002 3127CrossRefGoogle Scholar
Frauenrath, H.Dendronized polymers–building a new bridge from molecules to nanoscopic objectsProg. Polym. Sci. 30 2005 325CrossRefGoogle Scholar
Percec, V.Bera, T. K.Cell membrane as a model for the design of semifluorinated ion-selected nanostructured supermolecular systemsTetrahedron 58 2002 4031CrossRefGoogle Scholar
Percec, V.Cho, W.-D.Ungar, G.Yeardley, D. J. P.Increasing the diameter of cylindrical and spherical supramolecular dendrimers by decreasing the solid angle of their monodendrons via periphery functionalizationJ.Am. Chem. Soc. 122 2000 10273CrossRefGoogle Scholar
Tomalia, D. A.Dendritic effects: dependency of dendritic nano-periodic property patterns on critical nanoscale design parametersNew J. Chem. 36 2012 264CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×